S Powersoft.

Open Tools from Sybase, Inc.

PowerBuilder
Feature Guide
Version 6

Power
Builder




AA0526
Octecber 1997

Copyright © 1991-1997 Sybase, Inc. and its subsidiaries.
All rights reserved.
Printed in the United States of America.

Information in this manual may change without notice and does not represent
a commitment on the part of Sybase, Inc. and its subsidiaries.

The software described in this manual is provided by Powersoft Corporation
under a Powersoft License agreement. The software may be used only in
accordance with the terms of the agreement.

No part of this publication may be reproduced, transmitted, or translated in
any form or by any means, electronic, mechanical, manual, optical, or
otherwise, without the prior written permission of Sybase, Inc. and its
subsidiaries.

Sybase, Inc. and its subsidiaries claim copyright in this program and
documentation as an unpublished work, revisions of which were first
licensed on the date indicated in the foregoing notice. Claim of copyright
does not imply waiver of other rights of Sybase, Inc. and its subsidiaries.

ClearConnect, Column Design, ComponentPack, InfoMaker, ObjectCycle,
PowerBuilder, PowerDesigner, Powersoft, S-Designor, SQL SMART, and
Sybase are registered trademarks of Sybase, Inc. and its subsidiaries.
Adaptive Component Architecture, Adaptive Server Anywhere, Adaptive
Server Enterprise, Adaptive Warehouse, AppModeler, DataArchitect,
DataExpress, Data Pipeline, DataWindow, dbQueue, ImpactNow, InstaHelp,
Jaguar CTS, jConnect for JDBC, MetaWorks, NetImpact, Optima++,
Power++, PowerAMC, PowerBuilder Foundation Class Library, Power J,
PowerScript, PowerSite, Powersoft Portfolio, Powersoft Professional,
PowerTips, ProcessAnalyst, Runtime Kit for Unicode, SQL Anywhere, The
Model For Client/Server Solutions, The Future Is Wide Open, Translation
Toolkit, UNIBOM, Unilib, Uninull, Unisep, Unistring, Viewer,
WarehouseArchitect, Watcom, Watcom SQL Server, Web.PB, and Web.SQL
are trademarks of Sybase, Inc. or its subsidiaries. Certified PowerBuilder
Developer and CPD are service marks of Sybase, Inc. or its subsidiaries.
DataWindow is a patented proprietary technology of Sybase, Inc. or its
subsidiaries.

AccuFonts is a trademark of AccuWare Business Solutions Ltd.

All other trademarks are the property of their respective owners.



Contents

About This Book

............................................................................................................. vii
Release 6.0 Features........cccviirrieirriecssrssssssssscesmmmmrsmsmssesmenesessesssasanas 1
Distributed cCOmMpPULiNg ........coveiiiiiiiiii e 2
Shared ODJECES ..o 2
ST A Y g o 1H - o R 3
ASYNChronoUS ProCeSSING ......ccceviiiieireiirerieeeeeeeicceinnreeeeeeeeenes 4
DataWindow synchronization ...........cccccccvveviiiieeiveieeeeeeeeeeeeee, 5
NAME SEIVET ..ottt 5
Wired forthe Web ........cco ot 7
INtErNEt TOOIS ...c.eeeeeiiieiiei e 7
PowerBuilder window ActiveX......ccccceeeiiieiiiiiiiiiiieeeeeeeeeeeeeeeee. 8
Enhancements to DataWindow HTML creation ...................... 10
Secure mode for plug-ins and the PowerBuilder window
ACHVEX .o 13
Context feature..........oeuiiiieiieniieeccee e 15
Synchronizer for automatic file updates ..........cccceeeveeeunneenn.. 17
Web.PB wizard on the PowerBar............ccccvvvevveinceenenneeennnnn, 17
Web jumps from within PowerBuilder..............ccccvvvvviieeieeennnen. 17
OPpen teChNOIOGY .....coovieiiiiiieee et 18
Component generators.........ccooueeeiriiieeeesiiee e e e eeeareeeee s 18
Cross-platform support........coooeviieiiiiieiieireeeeeee e ee e 19
Internationalization ..........ccccecceeeiieiiie e 21
Database connectivity ..........ccccccviviiiiiiiiiiriceee e, 24
OLE enhanCements.........cc.ueevveiiiieiiieeie et 26
Standard source control APl ..........cccccevevieecciiiieieeeeeeeeeee, 29
Developer producCtiVity...........ccoeeccciriiieee e 30
Tracing and Profiling..........cccoeereieiiiieeeeeeee e 30
Debugger interface..........ccccevvieei e 32
DataWindow features ...........cccveeeeccieeeeecceiee e 33
PFC enhancements...........cooccuiiiiieeeicccccieeee e 38
Ease-of-use and language features ...........cccccoeeveeeeccnreeeeeennne. 40
Deployment and execution time enhancements ..................... 47
Web.PB wizard and OLE GenReg on the PowerBar .............. 51



Contents

Component Gallery ..........ccoooeeieiieiniee e 52
HOW Learning Edition..........coooiiiiiee e 52
PSCRAI ...t 53

2 What You Can BUild .......cciiiiinmiinme s s 55
Choosing an architeCture ..........cooooveeiiiiiiiiiie e 56
(0] 11T /L= V=Y PSSR 57
SiINGIE-TIEr ...t 57
Two-tier (traditional client/server) .........cccccevveeieiieieenecciieeeeen. 58
MIUBIEIET ...t e s s 60
INTEINEL ... 62
WED.PB ...ttt e 62
PowerBuilder window ActiveX.........ccooviiiiiiiiiiiiiiiiiii e, 63
PowerBuilder window plug-in ..........cccoeeviiiiiiiiiiceiecceeeee, 65
DataWindow plug-in .....ccouveieiiiiiee e 66
PowerBuilder automation server component ............cccceeveeeiinnnnen. 68
3 The Building BIOCKS .....coiiiicinimiiinnrinnns s meme e s s s 71
Choosing teChNOlOgIes..........oceeeeiiiiiiiiiieieiie et 72
USEr iNtEITACE ....cceeeiee et 74
WINAOWS ...ciiiiiiiiii et eeeeeseees 74
CONIIOIS .ot 78
MENUS ... .o 81
User interface style..........ooooeiiiiiiiiiiiiiiiiieeecee e 83
Application programming interface........c..ccveveeeieiiiiiiiiiiiiiieiieeeeenens 86
= 0 To [UE: To = PPN 88
SCHPLING ©eeeieeiiii e 88
ODJECES .. 94
Object-oriented programming..........cceeeeeeeeereeeeeeeeeermeeeemeemeeenenn. 98
Visual and nonvisual Classes ...........cccccvevveeiiiiiiiiicieniieeiieiinen, 100
Class lIDraries........ueeeeieiiieeeciiiii e 101
Data aCCESS ....cociieiiieeeeee et 105
Database CONNECHIONS........cciiiiiieieeeeeereeeece e, 105
Embedded SQL.........cooiiiiiiiiieee e 109
DataWindow ObJECES......ccouuuiiiiiiiiiiiie e 110
DataWindow CONtrolS ........ueiiereiiiiiiee e 117
DataStores .....ccooviiiiiiiiieee e e 118
Text and binary files ..o 119
Cliph0ard ...... it 119
Program @CCESS ...uuuiiiiiiiiiiieiiiiieiiieeeceeeeeeeeeee ettt ee e s e e e eaverseeeereeeees 120
Executable programs .........ccooeeeeeiieeee e 120
Help systems ... 120
E-mail SYStemS ....coooiiiiiiiiiiiieeeeeeeeeeee 121

iv



Contents

Component object Model ..........cooceeiiiiiiiiiiiiieeeec e 122
DD .. e e e 126
DLL and shared-library functions ...........cccccoeeeiiiiiiiiiiicenen, 127
G+ ClaSSES ..ottt a e 128
Database stored procedures .........cccccceeeeeiiiiieieieneneeeeeeeeeen, 128
Distributed PowerBuilder objects ............ccccovuieeeiiiieeeennnnnnnn. 129

1O 111 o1 | U UEUR RN 131
Printed repOmS ......cceiiriiiee e 131

File generation...........cccoiiiiiiiiioiie e 132
PrNtING .o 134
Data pipelines..........oocvviiiii e 135
ENVIFONMENT ..o e 137
Application 10giStiCS .......cccccuviiiiiiee e 137
Application CoONteXt ...........uuuuuiiiiiiiiiiiceceeeceeeeee e, 138
Platform support ... 139
International SUPPOrt...........ccc i 143
Initialization files and registries.........cccoccveeriiieiiniii e 143
Code generation..........cc.eeeerieiiieniiiee e 144
How You Build It ..cocceciccc s s se s e e e e e e e 147
USING tOO0IS ..ot e e 148
USING ODJECES ... 151
Testing and deployment..........c.c..eeveeeeiiriiciieee s 158






About This Book

Subject

Audience

This book describes new PowerBuilder features as well as PowerBuilder
implementation architectures and features.

This book is for both new and experienced PowerBuilder developers:

¢ New PowerBuilder developers Use this book to learn about
PowerBuilder features and the types of applications you can build
with PowerBuilder

¢ Experienced PowerBuilder developers Use this book to learn
about new PowerBuilder features and implementation architectures

vii






CHAPTER 1 Release 6.0 Features

About this chapter This chapter presents an overview of the new features in PowerBuilder
6.0.
Contents Topic Page
Distributed computing 2
Wired for the Web 7
Open technology 18
Developer productivity 30




Distributed computing

Distributed computing

Shared objects

Description

Purpose

Usage

PowerBuilder 6.0 includes the following distributed computing enhancements:
¢ Shared objects
Server push

L4

¢ Asynchronous processing

¢ DataWindow synchronization
*

Name Server

To allow you to work with persistent, shared data in a distributed application,
PowerBuilder provides support for shared objects. Shared objects are user
objects that can be shared by multiple client connections.

Not deployable on Windows 3.x and Macintosh

Shared objects are supported only on those platforms where server-side
processing and multithreading are supported. Support for shared objects is
not available on Windows 3.x and the Macintosh (because you cannot
deploy a server application on either of these platforms).

Shared objects provide significant benefits to both distributed PowerBuilder
applications and Internet applications that use Web.PB. Shared objects allow
you to:

¢ Provide convenient access to common data that would otherwise need
to be retrieved separately by each client connection

¢ Reduce the number of database accesses, freeing the database server
for other processing

¢+ Maintain state information in Web.PB applications

To allow multiple client applications to share a single object, the server
application performs these operations:

1 Invokes the SharedObjectRegister function to register a named instance
of the object

2 Invokes the SharedObjectGet function to get an object instance that is a
reference to the shared object



Chapter 1 Release 6.0 Features

Documentation

Server push

Description

Purpose

Usage

The server can perform these operations in its main thread or inside a client
session. The server application does not need to issue a CREATE statement for
the shared object. When the server calls the SharedObjectRegister function,
PowerBuilder automatically creates the shared object instance.

Shared objects are accessible only from the server’s main session and from the
client sessions created for each client connection on the server. Client
applications cannot access a shared object directly. To access a shared object,
a client needs to communicate with another object that has an instance variable
that provides a reference to the shared object. This object can be thought of as
the shared object wrapper.

Once the server has registered the shared object instance and retrieved a
reference to the object, client applications can call the methods defined for the
shared object by referencing the shared object wrapper. The shared object
wrapper has methods that provide indirect access to the methods of the shared
object. Typically, these methods have the same names as the methods defined
for the shared object.

At execution time, PowerBuilder creates a separate thread (session) for each
shared object instance and any objects that the shared object creates. The thread
for a shared object is created using the Application object definition for the
server application.

See Application Techniques.

Using a technique called server push, the server can send messages back to the
client.

Server push is particularly useful when the client needs to be notified of the
completion of an asynchronous request, or to push updated data to clients at
regular intervals.

The server can make both synchronous and asynchronous calls against client-
side objects. The client handles server-side requests the same way the server
handles client-side requests. Asynchronous requests against a particular client-
side object are queued and processed after all synchronous requests.



Distributed computing

Documentation

To send a message to the client, the server needs to know which client-side
object to send the message to. So the client must pass an object reference to the
server. When the server receives the object reference, it creates a remote
reference to the client-side object and calls one or more functions associated
with this object. Function calls made against the remote reference are passed
back over the wire to the client that contains the object.

To ensure that messages are actually sent to the client-side object, the client
must not pass an autoinstantiated object to the server. Instead, the client must
pass a reference to an object that is created with the CREATE statement.

See Application Techniques.

Asynchronous processing

Description

Purpose

Usage

Documentation

Unlike synchronous calls, which force the client to wait until processing has
completed, asynchronous calls free the client to do other work while the server
handles requests.

When the timing of function execution is not critical, you can use
asynchronous function calls to improve system throughput.

To make an asynchronous function call, you need to call the remote object
function with the POST keyword. If the POST keyword is not used, the
command executes synchronously. All asynchronous requests are queued on
the server and processed in the order received.

For example, the following script instantiates a remote object on the server and
makes an asynchronous call to a function of the remote object:

// Global variable: connection myconnect
// Instance variable: uo_custdata mycustdata

myconnect.CreateInstance (mycustdata)
mycustdata.post retrieve_datal()

See Application Techniques.



Chapter 1 Release 6.0 Features

DataWindow synchronization

Description

Usage

Functions

Documentation

Name Server

Description

In a conventional client/server application, where database updates are
initiated by a single application running on a client machine, PowerBuilder can
manage DataWindow state information automatically. But in a distributed
application, the situation is somewhat different. Because application
components are partitioned between the client and the server, you need to write
logic to ensure that the data buffers and status flags for the DataWindow
control on the client are synchronized with those for the DataStore on the
server.

To synchronize a DataWindow control on the client with a DataStore on the
server, you need to move the DataWindow data buffers and status flags back
and forth between the client and the server whenever changes occur. The
procedures for doing this are essentially the same whether the source of the
changes resides on the client or the server.

PowerBuilder provides five functions for synchronizing DataWindows and
DataStores in a distributed application:

GetFullState
GetChanges
GetStateStatus
SetFullState
SetChanges

Although these functions are most useful in distributed applications, they can
also be used in nondistributed applications where multiple DataWindows (or
DataStores) must be synchronized.

For information about DataWindow synchronization, see Application
Techniques. For information about functions, see the PowerScript Reference.

The Name Server is a PowerBuilder application that acts as a logical server in
a distributed computing environment. By managing requests between clients
and physical servers, the Name Server insulates clients from the physical
locations of the servers. When a client makes a request to connect to a
particular class of server, the Name Server redirects the client to the best
physical server choice.



Distributed computing

Purpose

Usage

Documentation

The Name Server provides a load balancing mechanism for distributed
applications. To optimize the use of available computing resources, the Name
Server examines the state of each physical server to determine where to direct
client requests.

To take advantage of the capabilities of the Name Server, you need to assign
each physical server to a logical server class. You typically have multiple
physical servers for each class you define. For example, the logical class
named Accounting could handle requests against the physical servers Acct_1,
Acct_2, and Acct_3. When a client makes a request against the Accounting
server class, the Name Server returns the physical connection information for
the physical server that is best equipped to handle the request.

See the online Help.



Chapter 1 Release 6.0 Features

Wired for the Web

PowerBuilder 6.0 includes features that allow you to deliver more powerful
Internet-based applications:

Internet Tools

Description

Purpose

*

* & & o o

Internet Tools

PowerBuilder window ActiveX

Enhancements to DataWindow HTML creation

Secure mode for plug-ins and the PowerBuilder window ActiveX
Context feature

Web jumps from within PowerBuilder

PowerBuilder Internet Tools include Web.PB and plug-ins for windows and
DataWindows. The following components in the Internet Tools have been

enhanced:
Component Enhancement
Window plug-in Secure mode
The ability to use the application open event
The ability to use PowerBuilder global variables
New MIME types for the PBD extension:
¢ PowerBuilder window plug-in:
application/vnd.powerbuilder6
¢ Secure mode PowerBuilder window plug-in:
application/vnd.powerbuilder6-s
Web.PB Distributed computing enhancements
Class library Minor enhancements including cookie support

Additionally, the Internet Tools now contain the PowerBuilder window
ActiveX control, which you use to provide the window plug-in functionality
within Internet Explorer.

You use the Internet Tools to create Web-based applications and to Internet-
enable current applications.



Wired for the Web

Documentation

For information about distributed computing enhancements, see "Distributed
computing" on page 2. For information about using Internet Tools, see
Building Internet Applications with PowerBuilder.

PowerBuilder window ActiveX

Description

Purpose

The PowerBuilder window ActiveX control is a component object that can
hold PowerBuilder child windows. In addition to providing all the capabilities
of the PowerBuilder Netscape plug-ins, the window ActiveX control features
access via JavaScript or VBScript to a subset of the window’s events and
functions.

The PowerBuilder window ActiveX control includes functions you can call to
invoke methods in the window contained in the control. Additionally, certain
events in the control trigger events in the ActiveX container. When an event
fires, it first executes any PowerBuilder script for the event and then executes
the code (JavaScript or VB Script) implemented for the container.

A PowerBuilder window displayed in the window ActiveX can include all the
familiar controls, including DataWindows, OLE objects, other ActiveX
controls, and TreeView controls. You can also open other popup and response
windows from the child window.

As the user interacts with controls in the windows, scripts for the control’s
events are executed just as they are in standalone PowerBuilder applications.
Database access by the window occurs locally using the client’s defined
database connections.

The objects in the application can be contained in one or more PowerBuilder
dynamic libraries (PBDs).

Use the PowerBuilder window ActiveX to provide a graphical interface inside
HTML pages. You can use it with any Web browser that supports ActiveX.
This includes Internet Explorer and Netscape Navigator running the ActiveX
plug-in.

Although this feature is primarily intended for use with Web browsers that
support ActiveX, you can display a PowerBuilder window or DataWindow in
any application that supports ActiveX.

The PowerBuilder window ActiveX requires that the client workstation
contain the PowerBuilder deployment DLLs as well as a registered version of
the PowerBuilder Window ActiveX module (either PBRX60.0CX or
PBRXS60.0CX).



Chapter 1 Release 6.0 Features

lllustration

Usage

Secure mode
PBRXS60.0CX is the secure-mode version of the PowerBuilder window
ActiveX.

£ Employee List - Microsoft Internet Explorer

®,

1

mployee First HName

Fran
Matthew
Philip
Julia
Robert
Melissa
Jeannette
Marco
Jane
Natasha
Kurt
Rodrigo
Ram
Temy
Rollin

Last Namne

Whitney
Cobb

Chin
Jordan
Breault
Espinoza
McDonald
Dill
Francis
Shishov
Driscoll
Guevara
Gowda
Melkisetian
Overbey

% To use the PowerBuilder window ActiveX:

Create, test, and build the PowerBuilder application.
Create a PBD.

Register the PowerBuilder window ActiveX on the HTML
development workstation.

Create an HTML page that includes your PowerBuilder application
window. This page can include JavaScript or VBScript that interacts
with the window.



Wired for the Web

5 Configure the Web server by copying the HTML pages, the
PowerBuilder window ActiveX, and PBD files for the application to
the appropriate directories.

6 On all client workstations, install the PowerBuilder window ActiveX
and the PowerBuilder deployment DLLs.

Functions GetArgElement
InvokePBFunction
TriggerPBEvent
GetLastReturn
ResetArgElements
SetArgElement

Documentation See Building Internet Applications with PowerBuilder.

Enhancements to DataWindow HTML creation

Description These are the enhancements to PowerBuilder’s DataWindow HTML
generation capabilities:

¢ Additional properties to help you control the display of DataWindow
data when displayed in HTML tables

These properties allow you to control cell formatting and borders.
# Style sheets that contain DataWindow formatting

PowerBuilder converts certain DataWindow presentation information
into an HTML cascading style sheet. It saves this style sheet in the
HTML.StyleSheet property, and syntax within the HTMLTable
property includes references to the generated styles. If you call the
SaveAs function with the HTMLTable enumeration, PowerBuilder
embeds the style sheet in the generated syntax.

¢ Form generation capability

You can call the GenerateHTMLForm function to create an HTML
form from data contained in a DataWindow control or DataStore whose
DataWindow object uses the Freeform or Tabular presentation style.
You can generate HTML forms for a specified set of rows and
columns; PowerBuilder preserves formatting such as radio buttons,
checkboxes, and listboxes. It also includes any command buttons
defined for the DataWindow.

10



Chapter 1 Release 6.0 Features

Purpose

lllustration

The HTMLTable.GenerateCSS property controls the downward compatibility
of the HTML found in the HTML Table property. If HTMLTable.GenerateCSS
is FALSE, formatting (style sheet references) is not referenced in the
HTMLTable property; if it is TRUE, the HTMLTable property includes
elements that reference the cascading style sheet saved in HTML.StyleSheet.

The value added in these features is the easy transfer of data from the database
to HTML pages. Two typical uses are:

¢ An application that creates HTML pages on a regular basis

¢ A Web.PB application that creates HTML pages on demand
This HTML page shows an HTML table using PowerBuilder 5.0 functionality:

11



Wired for the Web

This HTML page shows an HTML table using PowerBuilder 6.0

enhancements:

atment
[

First
Name

mployee
[y

LastName

3 Status
i

10 |

102 [ Whiney | Fran

| Actve

100 |

105 [Cotb | Matthew

| Active

100 |

160 | Beat | Robet

[ Active

100 |

202 [Shishov | Natasha

| Active

100 |

247 ‘ Driscoll 1 Kurt

On
Leave

100 |

29 [Guevaa | Fodigo

This HTML page shows a freeform DataWindow converted into a form using
syntax generated by the GenerateHTMLForm function:

CATEMP\formtemp. htm

Usage HTML tables When working with DataWindows to be displayed as HTML

tables, you can:

¢ Create HTML using the HTMLTable property, optionally merging
HTMLTable with HTMLTable.StyleSheet

¢ Create HTML by calling the SaveAs function with the HTMLTable!

enumeration

¢ Create HTML by saving rows displayed in DataWindow painter

Preview

12

[ active




Chapter 1 Release 6.0 Features

Functions

Documentation

HTML forms When working with DataWindows to be displayed as HTML
forms, you can:

¢  Create freeform and tabular DataWindow objects for use as HTML
forms, including command buttons

¢ Create HTML form syntax by calling the GenerateHTMLForm function

¢ Build an HTML page by merging the GenerateHTMLForm result with
the style sheet and adding other supporting HTML syntax

You can use both the enhanced HTMLTable capabilities and the form creation
capability to minimize coding in a Web.PB application.

GenerateHTMLForm

For information about new DataWindow object properties, see Objects and
Controls. For information about the Generate HTMLForm function, see the

PowerScript Reference. For information about using HTML generation, see
Application Techniques.

Secure mode for plug-ins and the PowerBuilder window ActiveX

Description

Secure mode helps to ensure that PowerBuilder applications downloaded over
the Internet will not damage a client system or access information on the client
system. The types of activity restricted by secure mode include:

¢ External functions Calling an external function causes an execution
time error

¢ Certain PowerScript functions Calling a restricted PowerScript
function causes an execution time error

¢ Database connection Calling PowerScript functions that result in
database access causes an execution time error

¢ Internet access Applications running in secure mode can only
establish an internet connections to the current Web server

¢ E-mail Calling PowerScript Mail functions causes an execution time
error

¢ OLE (restricted in Netscape plug-in only) Calling PowerScript OLE
functions causes an execution time error

¢ Distributed computing You cannot connect to PowerBuilder
application servers

13



Wired for the Web

Purpose

Usage

14

®,
*

+ Dynamic Data Exchange (DDE) Calling PowerScript DDE functions
causes an execution time error

You use secure mode to protect client workstations from rogue applications
written in PowerBuilder.

Severely restricted functionality

Running in secure mode severely restricts the PowerBuilder application
running on the client workstation, denying access to the client system
except for printing and (PowerBuilder window ActiveX only) using OLE
commands. Because of this, secure mode may not be appropriate in all
situations.

You implement secure mode by deploying special versions of the
PowerBuilder window plug-in or PowerBuilder window ActiveX, which you
deploy on client workstations as appropriate:

Product Default version Secure version
PowerBuilder window plug-in NPPBA60.DLL NPPBS60.DLL
PowerBuilder window ActiveX PBRX60.0CX PBRXS60.0CX

DataWindow plug-in

The DataWindow plug-in displays Powersoft report (PSR files) only. PSR
files are read-only, so there is not a secured version of the DataWindow
plug-in (NPDWEG60.DLL).

To use the secured version of the PowerBuilder window plug-in:

1 Copy NPPBS60.DLL to the PLUGINS directory on each client’s
workstation.

2 Perform all other client setup steps, as described in Building Internet
Applications with PowerBuilder.
To use the secured version of the PowerBuilder window ActiveX:

1 Install and register PBRXS60.0CX on the workstation used for HTML
page creation.

2 Use the Class ID for PBRXS60.0CX when specifying the OBJECT
element for a secured application.



Chapter 1 Release 6.0 Features

Documentation

Context feature

Description

3 (Optional) Install and register PBRXS60.0CX on all client
workstations, ensuring that you use the same Class ID specified in the
HTML Object elements. (You could perform this step when installing
the PowerBuilder deployment DLLs on the client workstation.)

4 Perform other client setup steps, as described in Building Internet
Applications with PowerBuilder.

See Building Internet Applications with PowerBuilder.

The PowerBuilder context feature allows applications to access certain host
(non-PowerBuilder) services:

¢ Context information service (available on all platforms)
¢ Keyword service (available on all platforms)
¢ Internet service (available on Windows 95 and Windows NT only)

These services provide environment-specific functionality for the following
environments (also called contexts):

¢ PowerBuilder execution time (default context)
¢ PowerBuilder window plug-in
¢ PowerBuilder window ActiveX

All aspects of each service may not be available in all contexts. Powersoft may
provide additional services after the release of PowerBuilder 6.0. Additionally,
you can write your own services by creating descendants of the service object.

Similar to the COM Querylinterface
This feature provides functionality similar to the COM QueryInterface.

15



Wired for the Web

Purpose

Usage

16

Use this feature to enhance the capabilities of your applications. For example,
by using the functions provided by the services, you can:

¢ Open the default browser, displaying a URL from within a
PowerBuilder application

¢ Access application arguments and environment variables
¢ Control the browser from within a PowerBuilder application

¢ Determine the execution context, modifying the application’s look,
feel, and processing depending on the environment

You begin by instantiating one of the services through the GetContextService
PowerScript function. This function takes an argument specifying the
requested service and returns a reference to the instantiated service. In this
example, PowerBuilder instantiates the context information service for use
within a window (icxinfo_base is a window-level instance variable of type
ContextInformation):

this.GetContextService("ContextInformation", &
icxinfo_base)

You can then use the reference variable in dot notation to call functions for the
ContextInformation object.

At execution time, PowerBuilder determines the current execution
environment and enables the requested service as appropriate for the
environment.

This table describes basic usage for each of the services:

Service Usage
Context Access basic information on the current execution context.
information Sample contexts include native PowerBuilder execution

environment, PowerBuilder window plug-in, and window
ActiveX. When running the window ActiveX within Internet
Explorer, this service can also access the IWebBrowserApp
ActiveX automation server object, which provides access to
browser methods and properties

Keyword Access environment information for the current context. When
running within the PowerBuilder window plug-in, this service
allows you to access parameters specified in the plug-in’s Embed
element

Internet Display a URL in the default browser. This service also allows
you to get and post URLs




Release 6.0 Features

Functions

Service

Functions

To enable a service

GetContextService

ContextInformation

GetName

GetHostObject
GetShortName
GetFixesVersion
GetCompanyName
GetMajorVersion
GetVersionName
GetMinorVersion

Keyword GetContextKeywords

Internet GetURL
Hyperlink ToURL
PostURL
InternetData

Documentation See Application Techniques.

Synchronizer for automatic file updates

The Synchronizer includes an ActiveX that you can insert in an HTML page to
update files in a deployed application from the World Wide Web.

FOR INFO  For information, see "The Synchronizer" on page 48.

Web.PB wizard on the PowerBar
You can invoke the Web.PB wizard from the PowerBar.

FOR INFO  For information, see "Web.PB wizard and OLE GenReg on the
PowerBar" on page 51.

Web jumps from within PowerBuilder

On Windows, the Help menu provides four links to the World Wide Web from
within the PowerBuilder development environment. This feature gives you
easy access to Web pages you use frequently.

17



Open technology

Open technology

PowerBuilder 6.0 features open technology that encompasses:
Component generators

Cross-platform support

Internationalization

Database connectivity

OLE enhancements

* & O o o o

Standard source control API

Component generators

Description PowerBuilder 6.0 includes a project generator infrastructure that enables future
support for open interfaces to PowerBuilder objects. Component generators
will be added to support the creation of standard object types from objects
developed in PowerBuilder.

Purpose Generating multiple component types from PowerBuilder objects will enable
an easy transition from one component model to another. Components
generated in PowerBuilder 6.0 can be deployed into a variety of middle-tier
server environments.

Usage When you create a new project in the Project painter, the New Project dialog
box shows the types of project you can build. Among the choices is
Application, which lets you build a standard executable and dynamic libraries
for either Pcode or machine code executables. The other choices available
depend on which generators are installed. Each generator will produce a
different set of output file types. When you deploy generated components, you
may need to deploy the PowerBuilder virtual machine (PBVM60.DLL) on the
same machine.

In addition to the Application generator, the dialog box also displays the Proxy
library generator, which builds a Proxy object that you can deploy with the
client in a distributed PowerBuilder application. When you install other
generators, they will appear in this dialog box.

When you select a generator, the Select Objects dialog box opens so that you
can choose the objects you want to use to generate a component. Depending on
the generator, you may also need to set some properties of the component.

18



Chapter 1 Release 6.0 Features

Documentation

For more information about generating Proxy objects and C++ classes, see
Application Techniques. For information about other generators, see the
documentation provided when the generator is available.

Cross-platform support

Font mapping

Description

Purpose

Usage

PowerBuilder 6.0 is available on two additional UNIX platforms:
¢ HP-UX Version 10.20
¢ IBM AIX Version 4.1.5

Changes have been made in the following features to make it easier for you to
move applications among platforms:

¢ Font mapping

¢ PowerBuilder units

PowerBuilder provides font mapping files you can use to determine which
fonts are used for your application. When PowerBuilder or a PowerBuilder
application is first started, it reads and saves information about the available
fonts on the system, then reads any font mapping specifications from
initialization files and maps fonts as specified.

Using font mapping files gives you more control over how objects display
when you deploy them on different machines or different operating systems.

Font mapping files are provided in the following locations:

Platform Name Location

Windows PBFNT60.INT Powersoft SHARED directory

Macintosh Powersoft Font Preferences | System Folder:Preferences

UNIX .pbfnt60.ini PowerBuilder install directory.
The file should be copied to each
user’s home directory

The font mapping file has a [FontSubstitutes] section containing lines like the
following (the default mappings are different on each platform):

Times=Times New Roman

19



Open technology

Documentation

PowerBuilder units

Description

Purpose

Usage

Documentation

20

This line specifies that if the Times font is used in an application and is not
available on the deployment machine, the Times New Roman font should be
used instead. You can modify or add to the default mappings to meet your own
needs.

On Windows, if a font is not available and you don’t provide a mapping for it
in PBFNT60.INI, Windows tries to find a font that matches the characteristics
of the missing font.

On Macintosh and UNIX, the font mapping file supplements or overrides the
existing mechanisms (an internal table on the Macintosh and the .WindU file
on UNIX).

See Application Techniques.

In PowerBuilder 6.0, the size of PowerBuilder units (PBUs) is defined in terms
of logical inches instead of as a fraction of the size of the system font. The size
of a logical inch is defined by your operating system as a specific number of
pixels. The number is dependent on the display device. For example, on a
Windows 95 system using Small Fonts on a standard VGA display, the number
of pixels per logical inch is 96.

This change prevents undesirable resizing of the information in a window or
DataWindow when deploying applications on different platforms. Previously,
when an application was deployed on a system that had a different system font
size from that on which the application was developed, information in
windows and DataWindows was compressed if the system font on the
deployment system was smaller or spread out if it was larger, because the size
of a PBU was determined by the system font size.

PBUs are the units used for the design of windows, visual user objects, and
optionally DataWindows. This change affects windows and DataWindows
designed using PBUs that were developed under the Macintosh and Solaris
operating systems, and also those developed under Windows if a system setting
of Large Fonts was used by the developer. Controls on these objects may need
to be resized after migration. Once migrated and fixed, they display correctly
on all platforms.

See Application Techniques.



Chapter 1 Release 6.0 Features

Internationalization

Unicode Standard

Description

Purpose

Usage

Separate versions of PowerBuilder will provide support for developers
working on these international platforms:

¢ Unicode Standard
¢ Japanese DBCS
¢ Arabic and Hebrew right-to-left operating systems

Localized deployment kits will be available for Windows platforms after the
first release of PowerBuilder 6.0 as part of the International Developer
Resources. The International Developer Resources will also contain localized
versions of the PowerBuilder Foundation Class Library (for PowerBuilder
Enterprise and Professional editions) and a new translation tool:

¢ Translation Toolkit

A new version of PowerBuilder for the Windows NT 4.x platform will support
the Unicode Standard format UTF-16, a character encoding system that has the
capacity to encode all characters used for written languages throughout the
world.

Use PowerBuilder for Unicode to develop applications in any of the character
sets supported by the Unicode Standard.

PowerBuilder supports the full Unicode Standard (UTF-16), which uses two
full bytes to store each character. In PowerBuilder for Unicode, text in dialog
boxes and other built-in objects in the graphical user interface displays in
English, but everything you type in is Unicode.

You can migrate applications from the ANSI version of PowerBuilder to the
Unicode version. When you open a PBL created in the ANSI version of
PowerBuilder, PowerBuilder for Unicode opens a dialog box in which you can
specify the library list and the directory where the Unicode version of the
application will be saved. The application is saved with the extension PUL, for
PowerBuilder Unicode Library.

A new menu item in the Library painter in PowerBuilder for Unicode lets you
migrate from the Unicode version back to the ANSI version. If you add
characters that are not supported in the ANSI version, the results are
unpredictable.

21



Open technology

Functions

Documentation

Japanese DBCS

Description

Purpose

Usage

Documentation

22

You must deploy applications built with PowerBuilder for Unicode with the
Unicode deployment DLLs as 32-bit applications on Windows NT 4.x. The
Unicode deployment DLLs are included with PowerBuilder for Unicode.

Two new functions enable conversion to and from Unicode characters:

ToAnsi
ToUnicode

The ANSI string data is stored in a binary large object.

For more information about functions, see the PowerScript Reference. For
more information about internationalization, see Application Techniques.

The Japanese version of PowerBuilder is compiled under Japanese Windows
and is available as a separate 32-bit executable for the Japanese versions of
Windows 95 and Windows NT.

Use the Japanese version of PowerBuilder to develop applications in Japanese.
You will be able to build applications for deployment on both 16-bit and 32-bit
versions.

Double Byte Character Support (DBCS) is currently enabled only in the
Japanese versions of PowerBuilder and InfoMaker.

In the Japanese versions, text in the graphical user interface and everything you
type in displays in Japanese, and the string-handling functions are double-byte
aware.

You must deploy applications built with the Japanese DBCS version of
PowerBuilder with PowerBuilder Japanese deployment DLLs on Japanese
Windows, Windows 95, or Windows NT.

You can migrate applications from the ANSI version of PowerBuilder to the
Japanese version. If you add characters that are not supported in the ANSI
version, they will not convert correctly if you migrate from Japanese to ANSI.

For more information about functions, see the PowerScript Reference. For
more information about internationalization, see Application Techniques.



Chapter 1 Release 6.0 Features

Arabic and Hebrew right-to-left operating systems

Description

Purpose

Usage

Functions

For more information

PowerBuilder Enterprise provides support for the Arabic and Hebrew
languages when run on an Arabic- or Hebrew-enabled version of Windows 95.
Support includes new functions and a new EditMask character to handle
Arabic or Hebrew characters and numbers.

Use the Arabic and Hebrew features in PowerBuilder to develop applications
specifically for those languages. You will be able to build applications for
deployment on both 16-bit and 32-bit versions of Windows.

Applications built using the Arabic and Hebrew features in PowerBuilder must
be deployed with the PowerBuilder Arabic or Hebrew deployment DLLs on
workstations running the appropriate Arabic-enabled or Hebrew-enabled
version of Windows.

On an Arabic-enabled or Hebrew-enabled version of Windows, you can
display text in right-to-left order and test for Arabic or Hebrew characters in
strings. You can migrate applications from the ANSI version of PowerBuilder
to the Hebrew-enabled or Arabic-enabled versions and vice versa. Right-to-left
support is lost when you migrate to the ANSI version.

A new mask character (b) in the EditMask control allows the entry of Arabic
characters when you run PowerBuilder on the Arabic-enabled version of
Windows and Hebrew characters when running on the Hebrew-enabled
version. This mask is useful when a single-letter prefix is required for an ID or
when a single character entry is required.

To use the mask, add an EditMask control to a window and open its property
sheet. On the Mask property page, select String from the Type dropdown
listbox and then select b from the Masks dropdown listbox.

Six new functions have been added:

IsAllArabic IsAllHebrew

IsArabicAndNumbers IsHebrew AndNumbers

IsAnyArabic IsAnyHebrew

For more information about functions, see the PowerScript Reference. For
more information about internationalization, see Application Techniques.

23



Open technology

Translation Toolkit

Description The Translation Toolkit is a set of tools that help you translate any
PowerBuilder or InfoMaker Version 6 application.

Availability
The Translation Toolkit for PowerBuilder 6.0 will be available three to six
months after the release of PowerBuilder 6.0.

The toolkit includes:
¢ Translator tool for translating extracted phrases

¢ Project Translator tool for substituting the translations for the original
phrases in the project libraries

¢ Database Administration tool for importing glossaries, defining new
languages, and deleting unused phrases and images in the translation
database

¢ Text Analyzer tool for saving data about controls you resize in
PowerBuilder so translated text fits

+ Microsoft International Glossaries for accessing the translations of
phrases found in Microsoft products

¢ Phrase Extractor tool for creating a translation project and extracting
phrases from the project libraries

Usage After the translations are substituted for the original phrases in the project
libraries, you build the translated application on the target deployment platform
(Windows 3.1, 95, or NT; Macintosh; or UNIX) and then deploy the translated
application.

Documentation See the Translation Toolkit User’s Guide.

Database connectivity

PowerBuilder Version 6.0 has an improved user interface for database profiles.
It also provides many other new and enhanced database connectivity features,
including:

¢ New database interfaces, including INFORMIX 7 and Oracle 7.3
¢ New DBParm parameters

¢ Support for Sybase Open Client 11.1

24



Chapter 1 Release 6.0 Features

FORINFO  For a complete list of new database connectivity features, see
online Help.

Improved user interface for database profiles

Description

Purpose

PowerBuilder provides an improved user interface for creating and managing
database profiles. A database profile is a named set of parameters stored in
your PowerBuilder or InfoMaker initialization file that defines a connection to
a particular database in the development environment.

The improved user interface for creating and managing database profiles in
PowerBuilder makes it easier for you to:

¢ See a list of your database profiles organized by Powersoft database
interface

¢ Access the Configure ODBC dialog box to create and manage ODBC
data source definitions

¢ Supply values for the connection options required by your Powersoft
database interface

¢ Set DBParm parameters in the development environment without
having to manually edit a complex and lengthy DBParm string

¢ Generate correct PowerScript connection syntax in the PowerBuilder
development environment for use in your PowerBuilder application
script

25



Open technology

Usage

Documentation

OLE enhancements

26

The new user interface for database profiles changes the steps you follow to
define, establish, and manage database connections in PowerBuilder. The
components of the new user interface are:

.

Database Profiles dialog box

The main Database Profiles dialog box has been redesigned using a tree
control format so you can easily see each installed Powersoft database
interface and its database profiles. You can create, edit, and delete
database profiles from this dialog box. And when the ODBC interface
or one of its profiles is selected, you can access the Configure ODBC
dialog box to create, edit, or delete an ODBC data source definition.

Database Profile Setup dialog box for each interface

Each Powersoft database interface now has its own Database Profile
Setup dialog box where you can set interface-specific connection
options and DBParm parameters. For example, if you select the SYC
interface and click New in the Database Profiles dialog box, a dialog
box displays with settings only for those connection options that apply
to the SYC interface.

The Database Profile Setup dialog box groups similar DBParm
parameters on the same tabbed page and lets you easily set values for
DBParms using checkboxes, dropdown listboxes, and textboxes. As
you complete the Database Profile Setup dialog box in PowerBuilder,
the correct PowerScript connection syntax for each selected option is
generated on the Preview tab. You can copy the syntax you want into
your PowerBuilder script.

See Connecting to Your Database.

PowerBuilder 6.0 includes changes in the following support for OLE:

*

.

*

OLE server features
OLE control container features

OLE error handling



Chapter 1 Release 6.0 Features

OLE server features

Description

Functions

Documentation

PowerBuilder 6.0 support for OLE servers includes new functions to provide
support for DCOM, event programming for OLEObjects, and the ability to
time out calls to a server. OLE automation performance has been improved,
and enumerated types for any OLE automation server display in the
PowerBuilder Browser.

Support for DCOM is provided by the ConnectToRemoteObject and
ConnectToNewRemoteObject functions. The new functions let you pass the

name of a remote host where a COM server resides when you connect to an
OLE object.

You can implement events for an OLEObject by creating a user object that is
a descendant of OLEObject. SetAutomationPointer assigns an OLE
automation pointer into the descendant so that it can use OLE automation.

CQatAntamatinnTimannt latg vasn
OCIAUWOITIAUTH 1 1iTICOUL ICIS YOuU

s
from a PowerBuilder client to a server. The default timeout perio
minutes.

o
-~
w
=
<
a

For more information about new functions, see the PowerScript Reference. For
information about using PowerBuilder with OLE, see Application Techniques.

OLE control container features

Description

Usage

PowerBuilder 6.0 support for OLE control containers includes extended
control properties, an implementation of the IOleContainer class, and message
reflection.

An OLE control can determine its location and modify it at execution time
using its extended control properties. In PowerBuilder 6.0, the properties you
can set are X (alias Left), Y (alias Top), Width, and Height. These properties
are real (R4) values, truncated to long integers when set. They are measured in
PBUs and are accessible using C++ and the OLE IOleControlSite interface.

PowerBuilder implements the IOleContainer class at the window level to
enable OLE controls to find out about their siblings.You can use the OLE
EnumObjects() method to access the OLE enumerator.

PowerBuilder OLE control containers perform their own message reflection
for a specific set of messages. This feature eliminates the execution-time
overhead that would be required if the OLE control had to create a reflector
window to handle these messages.

27



Open technology

Documentation

OLE error handling

Description

Purpose

Usage

Documentation

28

For information about using PowerBuilder with OLE, see Application
Techniques.

An OLE control can provide its own stock error event that is executed when
the OLE control calls the MFC FireError method.

You can use this event in PowerBuilder to separate error-handling code for
errors triggered when FireError is called from error-handling code for other
OLE exceptions. If no stock error event has been defined, the FireError method
triggers PowerBuilder’s ExternalException event.

A stock error event is an entry in the control’s IDL or ODL file created by the
MEC Class Wizard. Internally, PowerBuilder translates the stock error event
into an OCX_Error event to avoid name conflicts with PowerBuilder’s Error
event.

The OCX_Error event has the following signature:

void OCX_Error ( short Number, REF string Description, long Scode,
string Source, string Helpfile, long HelpContext, REF boolean
CancelDisplay )

You can set the CancelDisplay variable to TRUE to cancel the display of any
MFC error message. Alternatively, you can supply a different description. For
example:

sle_desc.text = description

sle_source.text = source

sle_helpfile.text = helpfile

sle_excep.text = "scode " + string(scode)
sle_result.text = "number " + string(number)
sle_helpid.text = "HelpID " + string(helpcontext)

canceldisplay = FALSE
description = "This is my new error description®

For information about using PowerBuilder with OLE, see Application
Techniques.



Chapter 1 Release 6.0 Features

Standard source control API

Description

Purpose

Usage

Documentation

PowerBuilder provides a standard version control interface (the PowerBuilder
SCC API) that is based on the Microsoft Common Source Code Control
Interface Specification, Version 0.00.0823.

You can use the PowerBuilder SCC API with any version control system that
implements features defined in the Microsoft specification. Some of the
vendors that provide an SCC API are INTERSOLYV (PVCS), Platinum
(CCC/Harvest), and Rational (ClearCase, formerly an Atria product).

Among the advantages of using this interface with a version control system are
that the PowerBuilder SCC API:

¢ Synchronizes the object in the public library with the archive as part of
the check-out procedure

¢ Will be modified in future PowerBuilder releases to support functions
added to version control systems to augment this Microsoft
specification

Some of the new features this interface offers are:
¢ More comprehensive registration reporting functionality

¢ A new trace logging capability

¢ The ability to require check-in comments

¢ The ability to compare an object in the work library with the object in
the archive and display differences

In the Library painter, select Source>Connect, then select SCC API in the
Vendor listbox. If you have more than one version control system installed and
configured for the PowerBuilder SCC API, you will be prompted to select one
system.

See Version Control Interfaces.

29



Developer productivity

Developer productivity

The following features increase developer productivity:
Tracing and profiling

Debugger interface

DataWindow features

PFC enhancements

Ease-of-use and language features

Deployment and execution time enhancements
Component Gallery

HOW Learning Edition

PSChart

® & & & 6 6 O o o

Tracing and profiling

Description The tracing and profiling feature allows you to collect and analyze information
about the execution of your PowerBuilder application.

Purpose The tracing and profiling feature helps you identify areas that you should
rewrite to improve performance and find errors in the application’s logic.

Usage There are three ways to collect trace data:

¢ You can use the Profiling page on the System Options dialog box to
enable tracing

¢ You can insert trace functions in your application scripts at the
beginning and end of the code you want to trace

¢ You can add a window to your application that lets you turn tracing on
and off as you run the application (w_starttrace is provided in the
Profile.pbl)

To analyze the collected data, you can use the Application Profiler or the
profiling and trace system objects to build your own analysis and/or display
applications. The Application Profiler is also provided as a sample application.

Objects A number of new system objects have been added to support tracing and
profiling:

30



Chapter 1 Release 6.0 Features

Category

New objects

Objects that provide the functions and properties
to create a performance analysis model from your
trace file and to extract information from that
model

ProfileCall
Profiling
ProfileRoutine
ProfileClass
ProfileLine

Objects that provide the functions and properties
to create a nested tree model from your trace file
and to extract information from that model

TraceTree
TraceTreeGarbageCollect
TraceTreeObject
TraceTreeError
TraceTreeLine
TraceTreeRoutine
TraceTreeESQL
TraceTreeNode
TraceTreeUser

Objects that provide the functions and properties
to access the data in your trace file sequentially

Functions A number of new functions have been added:

Category

TraceActivityNode
TraceFile
TraceObject
TraceBeginEnd
TraceGarbageCollect
TraceRoutine
TraceError
TraceLine

TraceUser
TraceESQL

New functions

Functions that collect data in a trace file

TraceBegin
TraceEnableActivity
TraceOpen
TraceClose

TraceEnd

TraceUser
TraceDisableActivity
TraceError

31



Developer productivity

Documentation

New functions

BuildModel
GetChildrenList
OutgoingCallList
ClassList
IncomingCallList
Reset

Close

LineList
RoutineList
DestroyModel
NextActivity
SetTraceFileName
EntryList

Open
SystemRoutine

Category

Functions that build models and/or extract
information

For more information about using the Application Profiler, see the online Help
provided with the application. For more information about using tracing and
profiling, see the PowerBuilder User’s Guide. For more information about
tracing and profiling functions, see the PowerScript Reference. For more
information about tracing and profiling objects, see Objects and Controls.

Debugger interface

Description

Usage

Views

32

The PowerBuilder debugger supports breakpoint, watchpoint, and stepping
capabilities and displays multiple views of your application in panes that you
can move, resize, and overlap for a customized layout. You can also use just-
in-time debugging to open the Debug window if a system error occurs or you
notice problems while running your application from the Run button.

When you run an application in debug mode, use conditional and occasional
breakpoints and the ability to set a breakpoint when a variable changes to fine-
tune where you suspend execution. Then set variables and expressions you
want to watch, and step through your code examining variables and memory
objects. You can step into, over, and out of functions, run to the location where
you set the cursor, and set the next statement you want executed.

Multiple views of the state of the application make it easy to monitor changes.
Use mouse actions (including drag and drop) to set, enable, disable, or clear
breakpoints and watchpoints and to change the context of the application:



Chapter 1 Release 6.0 Features

View

What it shows

Breakpoints

A list of breakpoints with indicators showing whether the
breakpoints are currently active or inactive

Call Stack

The sequence of function calls leading up to the function that
was executing when a breakpoint was hit

Objects in
Memory

An expandable list of objects currently in memory

Source

The full text of the current script or any script or function in
the application

Source Browser

An expandable hierarchy of objects in your application

Source History

A list of the scripts that have been displayed in the Source view

Variables An expandable list of all the variables in scope, in separate
views or views combining local, global, instance, parent, and
shared variables

Watch A list of variables or expressions you have selected to watch as
the application proceeds

Documentation See the PowerBuilder User’s Guide.

DataWindow features

The following enhancements have been made to DataWindows:

® & & ¢ 6 O O o o o

Button object

GroupBox object

Centered checkboxes

Scrollbar support in print preview
RowFocusChanging event

Excel 5 added to SaveAs PowerScript function
SaveAsAscii PowerScript function

Border painting enhancements

Improved handling of display formats

Improved n-up row selection

33



Developer productivity

Button object

Description

Purpose

lllustration

Usage

34

The Button object is a command (or picture) style button that can be placed in
a DataWindow object. When clicked at execution time, the button activates
either a built-in or user-supplied action.

Buttons make it easy to provide command button actions in a DataWindow
object (no coding is required). And using Button objects in the DataWindow
object (rather than CommandButton controls in a window) ensures that the
actions appropriate to the DataWindow object are included in the object.

This example shows a button placed in a report (a nonupdatable DataWindow
object). Clicking the button brings up the Filter dialog box, where the user can
specify a filter to be applied to the currently retrieved data:

Contact Information
—Address ———— —PhonelFaz
Clarke | Molly 55 Pine Grove Rd. (617) 555-4325
Sales Lexington , MA 02173 (617) 555-7638
di —PhonetFaz
Kaplan , Burt 49 Keaton Lane (617) 555-3887

In the DataWindow painter workspace, select Objects>Button from the menu
bar and click in the workspace.

To control whether the button displays in print preview and prints on the
printed DataWindow object, use the property sheet for the DataWindow object
itself.

What happens at execution time depends on whether Suppress Event
Processing is on or off for the button:

If Suppress Event

Processing is When the button is clicked
On The action assigned to it is executed
Off The new ButtonClicking event is fired. Code in the

ButtonClicking event (if any) is executed. If the return
code is 0, the action assigned to the button is then
executed. After the action is executed (or if the return
code from the ButtonClicking event is 1), the
ButtonClicked event is fired




Chapter 1 Release 6.0 Features

Documentation

GroupBox object

Description

Purpose

Hlustration

Usage

Documentation

For information about the object, see Objects and Controls or online Help. For
usage information, see the PowerBuilder User’s Guide.

The GroupBox object is a static frame used to group and label a set of objects
in a DataWindow object.

The Group Box is a visual enhancement that improves the layout of
information in a DataWindow object.

The illustration for the Button object on page 34 shows two groupboxes, both
with labels, in a report (nonupdatable DataWindow object): the Address
groupbox and the Phone/Fax groupbox.

In the DataWindow painter workspace, select Objects>Group Box from the
menu bar and click in the workspace.

For information about the object, see Objects and Controls or online Help. For
usage information, see the PowerBuilder User’s Guide.

Centered checkboxes

Description

Purpose

Usage

Scrollbar support in

Description

Checkboxes without text can be centered.

This feature makes it easy to create a neat layout of checkboxes in a
DataWindow object.

An easy way to take advantage of checkbox centering is to first work with the
column header text object and the column object being displayed as a
checkbox. Make these two objects the same size and left aligned. Then center
both the column header contents and the column object being displayed as a
checkbox using the Stylebar or the objects’ property sheets. The checkboxes
will be centered under the centered column header text.

For centering to work, the Left Text checkbox in the edit style tab page must
not be checked and the checkbox must not have associated text.

print preview

The scrollbars used for viewing DataWindow objects in print preview mode
now scroll through the complete DataWindow object. Support for changing
pages and for moving to particular pages easily has also been added.

35



Developer productivity

Purpose This feature improves the behavior of print preview and provides a way to
scroll if you are displaying in an Internet browser.

Usage Scrolling behavior is described in the following table:
Action What happens
Line Down Display goes down by a line size (1/5 of the screen height).

If it goes beyond the print page, the top of the next page
displays

Line Up

Display goes up by a line size (1/5 of the screen height). If it
goes beyond the print page, the bottom of the previous page
displays

Page Down

Display goes down by the screen height (or less) until it
reaches the bottom of the page. The following Page Down
goes to the top of the next page

Page Up

Display goes up by the screen height (or less) until it
reaches the top of the page. The following Page Up goes to
the top of the previous page

Top

Display goes to the top of the first page of the DataWindow
object

Bottom

Display goes to the top of the last page of the DataWindow
object

Dragging the
thumb (small box)
in the scrollbar

RowFocusChanging event

While the thumb is being dragged, the display is unchanged.
The page number corresponding to the current location of
the thumb displays on the MicroHelp bar and in a small
window next to the thumb in the scrollbar. Display changes
to new page when mouse is released

Description The RowFocusChanging event occurs when the DataWindow current row is
about to change (the current row of the DataWindow is not necessarily the
same as the current row in the database).

The RowFocusChanging event occurs just before the RowFocusChanged

event.

Purpose You can place code in the RowFocusChanging event to clean up resources
associated with the current row or to avoid an error by providing a default
resource to be used if a resource required by the next row is unavailable.

36



Chapter 1 Release 6.0 Features

Usage

Documentation

Typically this event will be coded to respond to a mouse click or keyboard
action that would change the current row in the DataWindow object.

See the PowerScript Reference.

Excel 5 added to SaveAs PowerScript function

Description

Purpose

Documentation

Syntax 1 (for DataWindows and DataStores) of the SaveAs PowerScript
function has a new value for the saveastype argument: Excel5!

This addition supports the ability to export data into the Excel 5 format, which
uses a different storage method from earlier versions of Excel.

See the PowerScript Reference.

SaveAsAscii PowerScript function

Description

Usage

Documentation

The SaveAsAscii function saves the contents of a DataWindow or DataStore
into a standard ASCII text file.

SaveAsAscii is a cross between the SaveAs (Text!) function and the SaveAs
(HTMLTable!) function with additional arguments. You can save computed
columns and headers to the ASCII file. Arguments allow you to control how
contents are separated and delimited in the ASCII file. PowerBuilder assigns a
cell for each object in the DataWindow (which can include computed columns
and group totals). If a cell is empty, PowerBuilder puts the quote character
between the separator characters in the output file.

See the PowerScript Reference.

Border painting enhancements

DataWindow border painting has been refined to apply zooming and device
units conversion to border sizes, resulting in the following improvements:

¢ Borders on objects in DataWindows change size appropriately when
zooming in preview

¢ Borders print more accurately

¢  Cell borders stay within cell boundaries in grid DataWindows

37



Developer productivity

Improved handling of display formats

When a column with both a DropDownDataWindow edit style and display
format does not have focus, the display format is used for displaying the data
value.When the column has focus, the raw data value is displayed.

Improved n-up row selection

The way row selection displays in an n-up DataWindow object has been
improved. When a specific row is selected, only that row will be highlighted.
Formerly that row and all other rows occurring on the same detail line as the
selected row were highlighted.

PFC enhancements

Description PFC (PowerBuilder Foundation Class Library) includes several new objects
and services, including:

¢ DataWindow resize service (where you provide resize capabilities to
the objects displayed in a DataWindow)

¢ DataWindow properties service (which includes dialog boxes you
display to view and modify DataWindow services, contents, and
properties)

DataStore multitable, print preview, and report services
Calendar

Calculator

Progress bar

Splitbar service

Application preference service

Window most-recently-used service

Logical unit of work service

®* & & 6 & O o o o

MetaClass service

PFC also includes the Library Extender, which you use to create intermediate
extension level objects automatically, and the message manager, which you
use to access and update the PFC messages table.

38



Chapter 1 Release 6.0 Features

Usage enhancements

Most objects use constants to signify typical return codes. This practice enables

you to write more readable code.

Enhancements have also been made to the following:

¢ W_master pfc_Save process

¢ Window status bar service

¢ Error message service

¢ DataWindow linkage service

¢ DataWindow caching

¢ Row selection service

¢ Security service

¢ Code examples

Objects The following table lists some of the new objects and services:
Object Description
u_st_splitbar Splitbar object
n_cst_dwsrv_resize DataWindow resize service
n_cst_dropdown Dropdown service
u_calculator Calculator object
u_calendar Calendar object
n_cst_luw Logical unit of work service
u_base Ancestor for all custom visual user objects
n_cst_apppreference Application preference service
u_progressbar Progress meter
n_cst_mru Window most-recently-used service
u_lvs Service-based ListView object
u_tvs Service-based TreeView object
n_cst_metaclass MetaClass service
Documentation See the PFC User’s Guide and the PFC Object Reference.

39



Developer productivity

Ease-of-use and language features

The following features have been added to make PowerBuilder easier to use:
Nonmodal Browser with context-sensitive Help

Last compiled timestamp in the Library painter

Flat toolbars

Support for the IntelliMouse Pointing Device

Enhanced source control for Application objects

Timing object

Updated control property arrays

* & & & 6 o o o

AncestorReturnValue variable

There are also several new objects that provide class definition information for
developers of tools and object frameworks:

¢ Class definition information

Nonmodal Browser with context-sensitive Help

Description

Purpose

Usage

40

The PowerBuilder Browser is nonmodal: it remains open when you move
between painter workspaces. Actions that were previously available as buttons
in the Browser, as well as new actions, have been moved to the popup menus.
You can open an object in a painter from its popup menu.

You can use the information available from the Browser as you move from one
PowerBuilder painter to another and access context-sensitive Help for objects,
controls, and functions directly from the Browser.

In the PowerScript painter PainterBar, click Browse Object. The Browser
opens with the current object selected. If the Browser is already open, it
changes to display the currently selected object.

In the PowerBar, click Browser. The Browser opens with the current
application object selected. If the Browser is already open, it does not change.

From the popup menu for items in the Browser, you can select some or all of
the following items:

Menu item . Select to

Edit Opens the selected object, or the parent of the selected
control, in the appropriate painter



Chapter 1 Release 6.0 Features

Menu item Select to

Copy Copies the selected object or control to the clipboard

Paste Pastes the object or control from the clipboard into the script
Expand All Expands the objects or controls within the selected object
Regenerate Regenerates descendants of the selected object

Show Inherited Toggles between displaying inherited properties, functions,
events, and variables (on) and displaying only items defined
in that object (off)

Show Legend Toggles between displaying (on) and hiding (off) the text
describing the selected property, function, event, or variable

Show Hierarchy | Toggles between displaying objects in an inheritance
hierarchy (on) and an alphabetical listing (off)

Document Copies information about the selected object to a preview
window with printing, exporting, and copying options

Help Displays context-sensitive Help

Last compiled timestamp in the Library painter
Description Developers can now display the date each object was last compiled.

Purpose With this additional information, you can identify the most recently compiled
PowerBuilder objects in the Library painter. If an object has not yet been
compiled, no compile date displays.

Usage In the Library painter, select Design>Options from the menu bar, then check
the Compilation Date checkbox.

Flat toolbars

Description PowerBuilder toolbars look and behave like those in Microsoft Office 97:

¢ Active toolbar items appear as 2D graphics until you move the mouse
pointer over them

¢ Disabled menu items have a silhouetted, engraved appearance and do
not respond to the mouse pointer

¢ A grab bar is available for moving and docking the toolbars

41



Developer productivity

Tooltips and MicroHelp status are available, and menu items can be grouped
by vertical lines.

Usage Toolbars defined in the Menu painter have the flat appearance.

Support for the IntelliMouse Pointing Device

Description The IntelliMouse Pointing Device is a new piece of hardware that can be used
as a standard 2-button mouse on 16-bit operating systems or as a 3-button
mouse with the added capability of a scroll wheel on 32-bit operating
systems—clicking on the wheel simulates the third (middle) mouse button.
This feature is not currently available on the Macintosh and UNIX.

Usage In DataWindow objects Using the IntelliMouse Pointing Device, a user
can scroll a DataWindow object (at execution time or in preview) by
rotating the wheel. The user can also zoom a DataWindow object larger or
smaller by holding down the CTRL key while rotating the wheel.

In standard controls such as TreeViews and ListViews Using the
IntelliMouse Pointing Device, a user can scroll a TreeView or a ListView at
execution time by rotating the wheel.

Enhanced source control for Appiication objects

Description Modifying an Application object registered in a version control system is as
simple as modifying any other registered object.

When you check out a registered Application object, PowerBuilder performs
some background tasks to make the Application object in your work library the
current application. When you check in an Application object, PowerBuilder
performs similar tasks to make the Application object in the public library your
current application.

Throughout the modification process, PowerBuilder remains connected to the
version control system.

Purpose Now you can modify the Application object in PowerBuilder more efficiently.

Usage Always check out and check in the Application object by itself.

To check out the Application object, select Source>Check Out from the
Library painter menu bar.

To check in the Application object, select Source>Check In from the Library
painter menu bar.

42



Chapter 1 Release 6.0 Features

Documentation

Timing object

Description

Purpose

Usage

Functions

Events

Documentation

See the PowerBuilder User’s Guide.

The Timing object is a nonvisual object type that provides a Timer event that
is not associated with a visual window.

You can use a Timing object in any application where you want to use a Timer
event without associating it with a window. For example, you may want to use
a Timing object in a distributed PowerBuilder server that uses a shared object
to access a database at regularly timed intervals.

Create a new standard class user object that inherits from the Timing object and
write application-specific code in the user object’s Timer event. Then create an
instance of the user object. To activate the timer, call the Start function
specifying the number of seconds you want between Timer events. The Timer
event is executed as soon as possible after the interval has passed.

Two functions have been added to start and stop a Timing object:

Start
Stop

The Timer event is now available for Timing objects.

For information about functions and events, see the PowerScript Reference.
For information about using the Timing object, see Application Techniques.

Updated control property arrays

Description

Purpose

Migration note

Usage

The control property arrays of windows and Tab controls are updated when
you use PowerScript functions to add controls or tab pages.

You can now use the built-in control property array to reference all the controls
in a window or all the pages in a Tab control. (Previously, the control property
array only kept track of controls or tab pages added in the Window painter.)

To avoid conflicts, change code that uses a user-defined array to keep track of
controls or tab pages to use the built-in control property array instead.

The control property of a window is an array that keeps track of the controls on
the window. The control property of a Tab control is an array that keeps track
of the tab pages on the Tab control. You can refer to each control or tab page
by its index in the control array.

43



Developer productivity

Functions

Documentation

When you call OpenUserObject or OpenTab, the control property array grows
by one clement. The new element is a reference to the newly opened object. For
example, the following statement adds a new tab in the second position in the
Tab control:

tab_1.0penTab (uo_newtab, 2)

The second element in the control array for tab_1 now refers to uo_newtab, and
the index into the control array for all subsequent tab pages becomes one
greater.

When you call CloseUserObject or CloseTab, the size of the array is reduced
by one and the reference to the user object or page is destroyed. If the closed
tab was not the last element in the array, the index for all subsequent tab pages
is reduced by one.

The MoveTab function changes the order of the pages in a Tab control and also
reorders the elements in the control array to match the new tab order.

The following functions are affected by this feature:

CloseTab

OpenTab

OpenUserObject
CloseUserObject
OpenTabWithParm
OpenUserObjectWithParm
MoveTab

For information about using the Control property array, see Application
Techniques. For information about functions and events, see the PowerScript
Reference.

AncestorReturnValue variable

Description

Purpose

44

When you extend an event script in a descendent object, the compiler
automatically generates a local variable called AncestorReturnValue that you
can use if you need to know the return value of the ancestor event script. The
variable is also generated if you override the ancestor script and use the CALL
syntax to call the ancestor event script.

You can now get the return value of an ancestor event script without explicitly
calling the ancestor script, passing it the appropriate arguments and capturing
its return value in a local variable.



Chapter 1 Release 6.0 Features

Migration note

Usage

The compiler generates the AncestorReturnValue variable automatically when
a script is compiled that extends an event or that calls its ancestor event using
the CALL syntax. If a script already has a local variable named

AncestorReturnValue, you will see a compiler error the first time the script is
compiled, which may be when you migrate an application to PowerBuilder 6.0.

To avoid name conflicts, you should rename the local variable.

Sometimes you want to perform some processing in an event in a descendent
object, but that processing depends on the return value of the ancestor event
script. You can use a local variable called AncestorReturnValue that is
automatically declared and assigned the value of the ancestor event.

The first time the compiler encounters a CALL statement that calls the ancestor
event of a script, the compiler implicitly generates code that declares the
AncestorReturnValue variable and assigns to it the return value of the ancestor
event. If you override the ancestor event script, you have to insert the CALL
statement explicitly; but if you extend the ancestor event script, the CALL
statement is generated by the Script painter.

The data type of the AncestorReturnValue variable is always the same as the
data type defined for the return value of the event. The arguments passed to the
call come from the arguments passed to the event in the descendent object.

Extending event scripts The AncestorReturnValue variable is always
available in extended event scripts. When you extend an event script, the
Script painter generates the following syntax and inserts it at the beginning
of the event script:

CALL SUPER::event_name
You only see the statement if you export the syntax of the object.

Overriding event scripts The AncestorReturnValue variable is only
available when you override an event script after you call the ancestor event
using the CALL syntax:

CALL SUPER:event_name
or
CALL ancestor_name::event_name

The compiler does not differentiate between the keyword SUPER and the name
of the ancestor. The keyword is replaced with the name of the ancestor before
the script is compiled.

The AncestorReturnValue variable is only declared and a value assigned when
you use the CALL event syntax. It is not declared if you use the new event
syntax:

45



Developer productivity

Documentation

ancestor_name::EVENT event_name ()
Example You can put code like the following in an extended event script:

IF AncestorReturnValue = 1 THEN
// execute some code
ELSE
// execute some other code
END IF

You can use the same code in a script that overrides its ancestor event script,
but you must insert a CALL statement before you use the
AncestorReturnValue variable:

// execute code that does some preliminary processing
CALL SUPER: :ue_myevent
IF AncestorReturnValue = 1 THEN

For more information about using the AncestorReturnValue variable, see
Application Techniques and the PowerScript Reference.

Class definition information

Description

Purpose

Objects

46

PowerBuilder 6.0 has several new objects that provide information about an
object’s class definition and its variables and scripts. A class definition object
is a PowerBuilder object that provides information about the class definition of
another PowerBuilder object. You can examine a class definition in a
PowerBuilder library or the class definition associated with an instantiated
object.

Class definition information is important for developers of tools and object
frameworks. Developers can inspect objects to produce reports or to define
objects with similar characteristics. Class information is not usually used in
typical business applications.

These new objects provide class definition information:

Object Description

TypeDefinition Provides information about a data type and is the
ancestor of several more specific definition objects:
ClassDefinition, SimpleTypeDefinition, and

EnumerationDefinition

ClassDefinition Provides the object’s class name, library, ancestor,
parent, variables, and scripts and the objects it contains




Chapter 1 Release 6.0 Features

Object

Description

SimpleTypeDefinition

Provides information about a simple data type, such as
integer, string, blob, and Any

EnumerationDefinition

Provides information about an enumerated data type

VariableDefinition

Provides information about a variable or property
associated with a class definition, including its access
level, scope, and whether it is an array

ScriptDefinition

Provides information about a function or event script
associated with a class definition, including its
arguments and return type, whether it is external, and
whether it is defined locally or in an ancestor object

Other objects and enumerated data types provide values for properties of these

objects.

Functions and

properties for your objects:

Several new properties and functions give you access to definition information

¢ PowerObject has a new property called ClassDefinition, making a
ClassDefinition object available for any instantiated object

¢ New global functions called FindTypeDefinition and
FindClassDefinition get a type or class definition object for an entry in
a PowerBuilder library

¢ New global function FindFunctionDefinition gets script information for

a global function

Documentation

For information about the objects, see Objects and Controls or online Help.

For function definitions, see the PowerScript Reference. For usage
information, see Application Techniques.

Deployment and execution time enhancements

In the Project painter, you can create both machine code and Pcode executables
for deployment on 32-bit and 16-bit workstations.

47



Developer productivity

The following additional deployment and execution time enhancements have
been added:

¢ Simpler deployment kit

The Synchronizer

PopulateError and SignalError functions
Garbage collection

Web.PB wizard and OLE GenReg on the PowerBar

* & & o

Simpler deployment kit

Description

Documentation

The Synchronizer

Description

Usage

48

Several of the PowerBuilder shared libraries (DLLs) in the PowerBuilder
deployment kit have been combined to simplify the installation of the
deployment kit. DLLs that support a specific feature such as RichText or
DataWindows are not required if your application does not make use of the
feature.

See Application Techniques.

The Synchronizer (Sync) is software that synchronizes two sets of files. Sync
compares source files to destination files and then copies the latest source files
to the destination so the files match.

For synchronizing deployed applications Sync’s primary purpose is to
synchronize files for your deployed PowerBuilder applications. Without
Sync, it’s difficult to maintain and deploy applications. With Sync, you can
update your users’ application files to match the latest application files—so
you don’t have to do it.

When a user starts a synchronizing application, Sync runs first to synchronize
application files, and then Sync runs the application. So every time a
PowerBuilder application runs, the application will run with the latest version
of all the files needed for the application.

For synchronizing files from a Web page You can use Sync to add
synchronization ability to a Web page so that when users access the page,
synchronization occurs.

What the Synchronizer does When Sync runs, it:



Chapter 1

Release 6.0 Features

I Looks for synchronization instructions (usually found in a Sync data
file) that specify the location of the source files and the destination files.

2 Displays a status window and logs the execution of instructions if such
instruction is provided.

3 Compares the source files to the destination files by checking date/time
stamps, sizes, and version information.

4 Copies changed source files (including source files that don’t exist on

the destination) to the destination.

5 Runs an application when synchronization completes if such
instruction is provided.

Sources The Synchronizer can synchronize files from these sources:

Source Example

FTP FTP://FTP.POWERSOFT.COM

Local drive CADIRECTORY\FILENAME

Server on the network \SHARENAME\COMMON\FILENAME

The Sync ActiveX can synchronize files from a local or network server or an

HTTP server.

Components The Synchronizer has three components:

Component | What you do Platform Filename
Sync Builder | Create and test a Sync | 32-bit only: SYNC.EXE
data file (contains Windows 95 and
synchronization Windows NT
instructions) 3.51 and 4.0
Sync runtime | Run the EXE and 32-bit: SYNCRT.EXE
executable provide a reference tc | Windows 95 and SYNCRT16.EXE

a Sync data file.
Optionally start an
application when
synchronization
completes

Windows NT 4.0

16-bit:
Windows 3.1 and
Windows NT 3.51

49



Developer productivity

Documentation

Component | What you do Platform Filename
Sync ActiveX | Insert the Sync 32-bit only: SYNC.OCX
ActiveX in an Windows 95
application window or | Windows NT 4.0
on a Web page,

specify properties,
and call the Execute
method to execute
synchronization
instructions

See the Synchronizer User’s Guide.

PopulateError and SignalError functions

Description

Purpose

Usage

Documentation

50

PowerBuilder 6.0 provides two ways to populate the Error object:
¢ A new SignalError syntax

This syntax allows you to populate the Error object with a specified
error number and text before the function triggers a SystemError event
at the application level.

¢ A new PopulateError function

This function allows you to populate the Error object with an error
number and error text without immediately triggering a SystemError
event.

The new SignalError syntax makes it easier for you to populate the Error
object: you supply the error number and error text values, and the remaining
structure values are filled in for you when SystemError is triggered.

The new PopulateError function allows you to populate the Error object
without triggering a SystemError event. With this function, you can populate
the Error object in one section of your script and trigger a SystemError event
in another section of your script.

Use the new SignalError syntax to set values for error number and text that will
be passed to the SystemError event.

Use PopulateError to set values in the error object before triggering a
SystemError event.

See the PowerScript Reference.



Chapter 1 Release 6.0 Features

Garbage collection

Description PowerBuilder checks memory for unreferenced and orphaned objects and
removes any it finds. When a reference is removed for an object, PowerBuilder
counts the remaining references to that object. If there are none, the class is
cleared from memory. PowerBuilder checks all the reference counts
periodically.

Purpose The garbage collection feature clears unused objects from memory, ensuring
more efficient memory usage. You can use it in the development stage as well
as in the deployed application.

Usage Garbage collection occurs periodically in PowerBuilder. New functions allow
you to use the existing period, modify the time period, or force immediate
garbage collection.

Functions Three functions have been added for this feature:

GarbageCollect
GarbageCollectGetTimeLimit
GarbageCollectSetTimeLimit

Documentation See Application Techniques and the PowerScript Reference.

Web.PB wizard and OLE GenReg on the PowerBar

Description This feature allows you to invoke the Web.PB wizard or the OLE GenReg
utility from the PowerBuilder development environment.

The Web.PB wizard and the OLE GenReg utility appear as two new system
level toolbar buttons. They also appear on the dropdown panel and the
PowerPanel. When you click the buttons, the applications display as modeless
dialog boxes. If you click a button while the application is open, PowerBuilder
activates the application. If you close PowerBuilder while an application is
open, the application also terminates.

The applications must be PBDs that are synchronized to the current version of
PowerBuilder.

The Web.PB wizard button appears only if you have installed Web.PB.

This feature is not currently enabled on UNIX and is not available on the
Macintosh.

51



Developer productivity

Purpose

Documentation

As more and more PowerBuilder applications are deployed as components,
access to supporting applications becomes more important. Use this feature for
easy access to two commonly used component deployment utilities.

For information about the Web.PB Wizard, see Building Internet Applications
with PowerBuilder. For information about Ole GenReg, see Application
Techniques.

Component Gallery

Description

Documentation

PowerBuilder 6.0 includes a number of sample ActiveX component products
in the Component Gallery for Powersoft Tools. These products are provided
for trial use with the application development environment and can be
assembled into a larger application architecture. Some of the component
products require additional licensing from the manufacturer. The Component
Gallery includes components for database and network access, message
handling, telecommunications, multimedia functions, and much more.

The Component Gallery for Powersoft Tools is available on Windows only.

See online Help for the Component Gallery.

HOW Learning Edition

Description

Purpose

52

PowerBuilder Enterprise for Windows includes the Learning Edition (LE) of
Riverton Software Corporation’s HOW. HOW LE is a specially designed
version of HOW intended to expose developers and analysts to the benefits of
component-based development. HOW LE has all the graphical builder tools
and all of the interfaces to third-party products that HOW Enterprise Edition
has. The primary difference between HOW LE and HOW Enterprise Edition is
in the limited number of objects that can be stored in the HOW LE repository
(25 analysis objects and 75 design objects).

HOW is the first component design and assembly environment built expressly
for developers of distributed business applications. HOW for PowerBuilder
allows developers to snap together multitier applications with business-object-
based components based on PowerBuilder user objects. Using HOW,
developers can custom-build or adapt and extend business objects and
technology components for applications that are partitioned along
presentation, business logic, and data access boundaries.



Chapter 1 Release 6.0 Features

Usage

Documentation

PSChart

Description

Documentation

HOW’s integrated set of tools supports a practical, flexible, and object-
oriented approach to business application development. Business object
domains, visual storyboards, workflows, and an object repository ensure the
development of reusable PowerBuilder business objects and technology
components.

HOW LE (and all HOW 1.2 products) includes HOW OpenFrame. This
framework supports development of partitioned PowerBuilder 5.0.03 and 6.0
applications, including support for PowerBuilder’s distributed capabilities.
HOW applications let you take advantage of PFC using PFC ancestors during
generation. You can also use HOW with custom framework objects that extend
or specialize PFC.

The HOW installation process provides a PowerBar button that allows you to
invoke HOW directly from the PowerBuilder development environment.

HOW LE is developed by Riverton Software Corporation

(www riverton.com). The HOW 1.2 product line (including HOW LE) is
provided on Windows 95 and Windows NT 4.0. This product line supports
PowerBuilder Versions 5.0.03 and 6.0, S-Designor Version 5.1,
PowerDesigner 6.0, and LogicWork’s ERwin/ERX for PowerBuilder Versions
2.6 and 3.0.

For HOW support, call Sybase’s technical support group.

See the HOW online help, which you can access from the PowerBuilder Help
contents listing, or other HOW online documentation, which you can access
from HOW’s program group.

PSChart is a full-featured charting component based on the Visual
Components First Impression Charting engine. PSChart is included as a bonus
to PowerBuilder customers on the Windows platform. It can be installed from
the bonus directory on the PowerBuilder CD. The PSChart ActiveX includes a
variety of 2D and 3D charting styles, including bar, line, area, step, pie and
scatter graphs. A robust programming interface offers numerous properties,
methods, and events that allow PowerBuilder developers convenient access to
the many available features and integration with the DataWindow as an OLE
presentation style.

See the online Help provided with PSChart.

53



Developer productivity

54



CHAPTER 2

About this chapter

Contents

What You Can Build

With PowerBuilder, you can develop various kinds of applications, using
a choice of architectures. This chapter describes those choices.

Topic Page
Choosing an architecture 56
Client/server 57
Internet 62
PowerBuilder automation server component 68

55



Choosing an architecture

Choosing an architecture

Architecture
requirements

Architectures that
PowerBuilder
supports

56

System architecture requirements typically focus on how an application is to fit
into its target computing environment.

Sometimes system architecture requirements are simple, such as when the
application is intended to run on one particular operating system and access a
local database. Increasingly, however, system architecture requirements are
more complex, such as when an application must run on multiple platforms,
access one or more server databases, execute code on application servers, and
maybe even port to the Internet.

There are many reasons for this increased complexity. Corporations want to
leverage their existing investments, while at the same time increasing
functionality and positioning the enterprise for the future. They want to save
time and money during both application development and deployment.

PowerBuilder supports many architectures:

Category Architecture

Client/server Single-tier

Two-tier (traditional client/server)

Multitier (distributed applications)

Internet Web.PB

PowerBuilder window plug-in

PowerBuilder window ActiveX

DataWindow plug-in

ActiveX automation PowerBuilder automation server component

PowerBuilder allows you to develop and deploy applications in the
architecture that’s right for your current needs. And if those needs change, you
can easily redeploy to a different architecture.

This chapter gives you a general overview of the application architectures you
can implement through PowerBuilder. Within each of these architectures, you
PPN 1da variate £ tanhnnlacging ta hiild an annlicatinn Thaga

Caii uS€ a wiac var lC\.y Ol WLHHVIVZITS WV ouiid an ayyu\.auuu L 11IUDdC

technologies are described in Chapter 3, "The Building Blocks".



Chapter 2 What You Can Build

Client/server
Single-tier
Description A single-tier application runs entirely within a single workstation. All required
logic and processing is contained within a single application. A single-tier
application can include print and e-mail functionality, but it does not access
data through a server database or communicate with a server application.
Uses You use a single-tier application when the business problem to be solved does
not involve network resources.
PowerBuilder ships with many sample single-tier applications, including:
¢ The DWSyntax utility (no database)
¢ The Picture Viewer (no database)
¢ The PFC Security Administration utility (PFC only)
¢ The Application Profiler (no database; PowerBuilder Enterprise only)
lllustration
PowerBuilder
execution ~
environment \\
S /\3 _]
F_\ e A‘
- - ,
| Local / P:;v;g::fner
| database
uoptional)
~—~
Ingredients A single-tier PowerBuilder application uses windows, window controls, and

menus to present the user interface and can use DataWindows to access a local
database, such as SQL Anywhere. Its windows can include ActiveX controls
for specialized user interface elements.

You can place the application logic within control, window, and menu
scripts—or you can use custom class user objects to separate user interface
from application interface.

Planning for the future
If you implement application logic in a custom class user object, a single-
tier application will port easily to other architectures.

57



Client/server

Implementation

Documentation

To implement a single-tier application:
1  Use the Window painter to design the user interface.

2 (Optional) Use the Menu painter to design menus for the application’s
windows.

3 (Optional) Use the DataWindow painter to access database data and
display it in a suitable presentation style.

4 Code application processing logic. You can place this code in different
locations:

¢ Inevents for menu items and visual controls
¢ In window-level events, user events, and window functions

¢ In custom class user objects

To learn more about single-tier application development, see Application
Techniques.

Two-tier (traditional client/server)

Description

Uses

llustration

58

In a two-tier application, a PowerBuilder program running on a client
workstation accesses a database running on the server.

One advantage of PowerBuilder is that you can transform a single-tier database
application into a two-tier application by changing the application’s database
connection parameters to access a server database.

Developers have written thousands of two-tier PowerBuilder applications for
both commercial and corporate deployment. These applications include
customer service, manufacturing, finance, human resources, and accounting.
PowerBuilder is the application development tool of choice for two-tier
client/server applications.

PowerBuilder
execution
environment \\\ Server
= :_—E—_T—/ database
B s Database server T
PowerBuilder
application



Chapter 2 What You Can Build

Ingredients

Implementation

Documentation

A two-tier PowerBuilder application uses windows, window controls, and
menus to present the user interface and can use DataWindows to access data
from a server database, such as Sybase Adaptive Server. Its windows can
include ActiveX controls for specialized user interface elements.

You can place the application logic within control, window, and menu
scripts—or you can use custom class user objects to separate the user interface
from the application interface.

Planning for the future
If you implement application logic in a custom class user object, a two-tier
application will port easily to other architectures.

A two-tier application that uses one of Powersoft’s native database drivers also
requires DBMS-specific client software on the client workstation.

To implement a two-tier application:
1 Use the Window painter to design the user interface.

2 (Optional) Use the Menu painter to design menus for the application’s
windows.

3 Use the DataWindow painter to access server database data and display
it in a suitable presentation style.

4 Code application processing logic. You can place this code in different
locations:

¢ In events for menu items and visual controls
¢ In window-level events, user events, and window functions

¢ In custom class user objects

Use PFC

Consider implementing new applications using PFC (PowerBuilder
Foundation Class Library). PFC’s service-based architecture and complete
selection of precoded objects provide a solid foundation for new application
development.

To learn more about building two-tier applications, see Application
Techniques. To learn more about accessing databases, see Connecting to Your
Database. To learn more about PFC, see the PFC User’s Guide.

59



Client/server

Multitier

Description

Uses

Hlustration

Ingredients

60

In a multitier application, a PowerBuilder program running on a client
workstation accesses a PowerBuilder server application for certain application
processes, such as validation, business rules, and database access. The server
application in turn accesses database servers as necessary.

Multitier PowerBuilder applications use custom class user objects to contain
the logic that executes on the application server. Within a custom class user
object, you define object functions that the client application calls and that
return data to the client application.

You use a multitier PowerBuilder application for many purposes:
¢ To control access to sensitive information and business rules

+ To simplify client deployment (when the server performs all database
access, the client application doesn’t need DBMS-specific client
software)

¢ To insulate the user interface from internal changes to business logic

¢ To reduce the workload on client applications

Other types of multitier PowerBuilder applications
Other types of multitier PowerBuilder applications include:

¢ Web.PB
¢ OLE automation server (when used with DCOM)

PowerBuilder [ PowerBuilder f
4 execution | 1 execution
/| environment /,,/ environment ]
Vs — S //,/ S ,,ﬁ
/ /
e — e )
B =] I
l;]l =\ —
- = — |
=" Server |
e
Eil HMM iBHHHH - } database
PowerBuilder client PowerBuilder Database server \_/
application server application

Client application Contains windows, menus, DataWindow objects, and
proxy user objects. Proxy user objects provide a link to the custom class
user objects running on the application server. A PowerBuilder client
application also uses a Connection object to access the application server.



Chapter 2 What You Can Build

Implementation

Documentation

Server application Contains custom class user objects, which client
applications call to perform processing. A PowerBuilder server application
also uses a Transport object to listen for client requests, and often has a
simple visual component to display server status and statistics.

Server application To implement the server component of a multitier
application:

1

(Optional) Use the Window and Menu painters to design the
application server’s user interface.

Use the DataWindow painter to develop DataWindow objects that
access database data for use in client applications.

Use the User Object painter to create custom class user objects that
contain application processing logic.

Client application To implement the client component of a multitier

application:

1 Use the Window painter to design the user interface.

2 (Optional) Use the Menu painter to design menus for the application’s
windows.

3 Use the DataWindow painter to create DataWindow objects to contain
rows returned by the server application.

4  Create a Connection object and establish a connection to the server
application.

5  Perform application processing by calling functions in custom class

user objects on the server application.

To learn about developing multitier applications, see Application Techniques.

61



Internet

Internet

Web.PB

Description

Uses

lllustration

Ingredients

Implementation

62

Web.PB brings the distributed computing capabilities of PowerBuilder to the
World Wide Web. By making it possible for Web browsers to call functions in
distributed objects, Web.PB enables HTML documents to take advantage of
PowerBuilder’s advanced capabilities.

Use Web.PB to provide a Web-based thin client interface to your application.
Using Web.PB, users can access a PowerBuilder application with nothing but
a Web browser on the client.

‘ PowerBuilder
p Web.PB execution
// // environment
pd -
« -
| 1 E‘ = N
= = 3
- —J (- |
=N i > Server
- :I _ Lﬂm - {NW database
Web browser Web server PowerBuilder —

server application

A Web.PB application contains:

L

* & o o

Web browser

Web server that supports CGI, NSAPI, or ISAPI
Custom class user objects

Application server

Communications driver (WinSock or NamedPipes)

To use Web.PB:

1

Create custom class user objects that process data as necessary and
return HTML.

Code a PowerBuilder server application that listens for Web.PB
requests. This application must include the custom class user objects
coded in step 1.

Set up the Web server:



Chapter 2 What You Can Build

Documentation

¢ Install Web.PB’s CGI, ISAPI, or NSAPI interface on the Web
server

¢ Install one of the supported communications drivers (WinSock is
included automatically)

¢ Code a PBWEB.INI file and make it accessible to the Web server
(this file tells the Web.PB interface how to access the server
application)

¢ Create HTML that calls your user object functions

FORINFO To learn more about Web.PB, see Building Internet Applications
with PowerBuilder.

PowerBuilder window ActiveX

Description

Uses

The PowerBuilder window ActiveX lets you display a PowerBuilder child
window in an HTML page. You can use JavaScript or VBScript to interact with
the child window via the PowerBuilder window ActiveX.

Similar to the PowerBuilder window plug-in

The PowerBuilder window ActiveX is similar to the PowerBuilder window
plug-in. The difference is that the window ActiveX supports programmatic
interaction via JavaScript or VBScript.

HTML provides a limited user interface. Use the PowerBuilder window
ActiveX to provide a rich user interface within an HTML page. This interface
can contain all PowerBuilder controls, including the DataWindow.

Secure mode

PowerBuilder also includes a secure version of the PowerBuilder window
ActiveX, which disallows all functions that could possibly disrupt the end-
user workstation.

63



Internet

Illustration |—Wﬁ
inaow

|

/1 ActiveX |
oo ]

JavaScript/VBScript interaction
PowerBuilder 4

=i __llibraries (stored

|
execution l
] environment \\ /*i“f\_—"ﬂr//// as PBDs)
g

y e e s
- == Web server

%H [ PowerBuilder |

o

P!

~_ [~ A

\\1; Database !
| (local or ‘

L sgrver) P,

Ingredients A PowerBuilder window ActiveX application contains:
¢ A Web browser that supports ActiveX

¢ One or more HTML pages to contain the PowerBuilder window
ActiveX (these pages can use JavaScript or VBScript to interact with
the PowerBuilder window ActiveX)

A Web server

PowerBuilder windows and other PowerBuilder objects
The PowerBuilder window ActiveX

The PowerBuilder virtual machine (PBVM60.DLL)

* & & o o

(Optional) Database client software

Implementation To use the window ActiveX:
1  Create, test, and build the PowerBuilder application.

2 Save the application in one or more PowerBuilder dynamic libraries
(PBDs).

3 Create HTML pages with Object elements that point to PowerBuilder
child windows. These pages can include JavaScript or VBScript that
interacts with the PowerBuilder window ActiveX.

4  Configure the Web server by copying the HTML pages, the
PowerBuilder window ActiveX, and PowerBuilder dynamic library
files to the appropriate directories.

5 On all client workstations, install the PowerBuilder window ActiveX,
the PowerBuilder deployment DLLs, and (if necessary) database client
software.

64



Chapter2 What You Can Build

Documentation To learn about the PowerBuilder window ActiveX, see Building Internet
Applications with PowerBuilder.

PowerBuilder window plug-in

Description The PowerBuilder window plug-in lets you display a PowerBuilder child
window in an HTML page.

Uses HTML provides a limited user interface. Use the PowerBuilder window plug-
in to provide a rich user interface within an HTML page. This interface can
contain all PowerBuilder controls, including the DataWindow.

Secure mode

PowerBuilder also includes a secure version of the PowerBuilder window
plug-in, which disallows all functions that could possibly disrupt the end-
user workstation.

lllustration

| Window |
| plugin |
| PowerBuilder pd = _—
execution | W /J _PowerBuilder
| environment L = . !Ilbranes (stored
[ — AN / mmlm | as PBDs)
\\ —
- Web server
Web browser \\\

Database
(local or

65



Internet

Ingredients

Implementation

Documentation

A PowerBuilder window plug-in application contains:

A Web browser that supports plug-ins

One or more HTML pages to contain the window plug-in
A Web server

PowerBuilder windows and other PowerBuilder objects
The PowerBuilder window plug-in module

The PowerBuilder virtual machine (PBVM60.DLL)

* & & O o oo o

(Optional) Database client software

To use the PowerBuilder window plug-in:
1 Create, test, and build the PowerBuilder application.
2 Save the application in a PowerBuilder dynamic library (PBD).

3 Create HTML pages with Embed elements that point to PowerBuilder
child windows.

4  Configure the Web server by copying the HTML pages and the
PowerBuilder dynamic library files to the appropriate directories, then
define the MIME type for PowerBuilder’s PBD files.

5  On all client workstations, install the PowerBuilder window plug-in,
the PowerBuilder deployment DLLs, and (if necessary) database client
software; then define the MIME type for PowerBuilder’s PBD files.

To learn about the window plug-in, see Building Internet Applications with
PowerBuilder.

DataWindow plug-in

Description

66

The DataWindow plug-in lets you display Powersoft report (PSR) files on an
HTML page. These reports can use most of the DataWindow presentation
styles, including Graph, Crosstab, Freeform, Tabular, Label, and Composite
(RichText is not supported).

A PSR file contains a report definition (which includes presentation
information) as well as the data. Because its data is saved with it, a PSR file
does not require a database connection. But the data is static and cannot be
refreshed.



Chapter 2 What You Can Build

Uses

lllustration

Ingredients

Implementation

Documentation

Many sites already use PSR files to distribute reports. Use the DataWindow
plug-in to distribute PSR files through the World Wide Web.

By regularly creating a central source of PSR files from current data (perhaps
even nightly), end users can display, print, and save reports using only a Web
browser equipped with the DataWindow plug-in.

DataWindow |
~ _— Liflug—in

&

1]

i

[0

v <

=)

Web browser el

PSR files

\

o
I3

erver

A DataWindow plug-in application contains:

A Web browser that supports plug-ins

One or more HTML pages to contain the DataWindow plug-in
A Web server

PSR files

* & & o o

The PowerBuilder DataWindow plug-in

To use the DataWindow plug-in:
1 Create PSR files.
2 Create HTML pages with Embed elements that point to PSR files.

3 Configure the Web server by copying the HTML pages and the PSR
files to the appropriate directories, then define the MIME type for
PowerBuilder’s PSR files.

4 On all client workstations, install the PowerBuilder DataWindow plug-
in and define the MIME type for PowerBuilder’s PSR files.

To learn about the DataWindow plug-in, see Building Internet Applications
with PowerBuilder.

67



PowerBuilder automation server component

PowerBuilder automation server component

Description

Uses

lllustration

Ingredients

Implementation

68

The PowerBuilder automation server component is a server for programmable
(rather than insertable) objects. It allows client components to access functions
defined in custom and standard class user objects.

Use the PowerBuilder automation server component to allow both
PowerBuilder and non-PowerBuilder applications to access functions defined

in class user objects. You can also run the server component on a machine other
than the client workstation.

Using the PowerBuilder automation server component, you can:

# Call user object functions from non-PowerBuilder applications, such as
Visual Basic

¢ Distribute applications without using PowerBuilder’s distributed
computing capabilities

¢ Define user objects as Microsoft Transaction Server components

PowerBuilder

execution
environment

=
% \\
i
- —
pe=— SN
= = m”m Server i
% database J
Client application PowerBuilder —
(PB or non-PB) automation server
component (local
or remote)

Using the PowerBuilder automation server component requires:
¢ ActiveX automation

¢ Registry entries on the client workstation

¢ Standard or custom class user objects
*

The PowerBuilder execution environment on the server

To use the PowerBuilder automation server component:



Chapter 2 What You Can Build

Documentation

1 Create the standard or custom class user object, including functions to
be called by the client.

2 Create an execution time library for the user object (either Pcode or
machine code).

3 Create registry information for the user object and register it on client
workstations.

4 Write client applications that connect to the user object and call user
object functions.

To learn more about the PowerBuilder automation server component, see
Application Techniques.

69



PowerBuilder automation server component

70



CHAPTER 3

About this chapter

Contents

The Building Blocks

PowerBuilder provides a rich selection of technologies that you’ll use as
the building blocks of your application. This chapter is an overview of

them.

Topic Page
Choosing technologies 72
User interface 74
Application programming interface 86
Language 88
Data access 105
Program access 120
Output 131
Environment 137

71



Choosing technologies

Choosing technologies

PowerBuilder provides a rich selection of technologies that you can use in
building an application. These include:

Review this chapter

Plan for the future

72

L

® & & & 6 6 O O o o o

Native PowerBuilder user interface elements

Object-oriented development and programming for both visual and
nonvisual objects

The PowerBuilder Foundation Class Library (PFC)

The advanced database access capabilities provided by the DataWindow
Database drivers for ODBC and native access

PowerBuilder’s distributed computing capabilities

Access to external functions

OLE, ActiveX, and DDE

Access from C++ programs

Multiplatform application development

Machine code and Pcode deployment

Integrated source control

International support

Review this chapter to learn about the technologies you can use when
implementing a PowerBuilder application. The more time you spend planning
your application development strategy, the better.

When choosing technologies for an application, try to position your application
for the future. For example, if you place application logic in custom class user
objects, you can use that logic in all supported architectures.



Chapter 3 The Building Blocks

Sample code If you’re the type of person who learns by reading code, you might want to start

by looking at the PowerBuilder sample applications and code examples:
¢ Application Gallery

This is a collection of working sample applications that have been built
in PowerBuilder. You can run these applications to perform useful
tasks. You can also examine their contents in PowerBuilder to get ideas
for your own projects and to copy objects or code.

¢ Code Examples

This is a collection of windows that demonstrate PowerBuilder coding

techniques and show you how PowerBuilder can solve common coding
problems.

73



User interface

User interface

Windows

Main windows

Description

Uses

74

Windows are the major building blocks of an application’s user interface. They
provide features you can use to let people view information, manipulate
information, and initiate actions.

The role of a window You can design the user interface of an application
to involve just one window. But most of the time you’ll involve several
different windows, with each one playing a particular role to help the user
get a larger job done. The role of any individual window is usually to
present a particular kind of information and let users interact with that
information in certain ways.

Types of windows PowerBuilder provides several different types of
windows that you can use in your application. Each type has some unique
characteristics that make it good for fulfilling one or more specific
presentation or interaction needs:

¢ Main windows

¢ Response windows and message boxes
¢ Popup windows and child windows

¢ MDI frames

Main windows are where you’ll usually have users perform the major
activities of the application. You can think of them as home bases for those
activities.

Use main windows for PowerBuilder client/server applications.



Chapter 3 The Building Blocks

Hlustration

Ingredients

Implementation

Documentation

Main windows display one or more controls, which users interact with to drive
the application. Main windows often include menus, which users use to request
application processing.

When used within an MDI frame (explained on page 77), main windows are
called sheets.

Window painter

To learn about main windows, see the PowerBuilder User’s Guide.

Response windows and message boxes

Description

Uses

llustration

Response windows and message boxes are good for situations where you want
to force users to consider some information and/or choose some action before
they can do anything else in the application.

Use response windows when an application requires user input before
continuing.

Use message boxes to convey information needed before continuing.

i Welcome

75



User interface

Ingredients

Implementation

Documentation

Response windows and message boxes display text. They also contain buttons
the user clicks to direct processing and close the window. Response windows
can also contain other PowerBuilder controls.

Window painter (response windows)
PowerScript MessageBox function (message boxes)

To learn about response windows and message boxes, see the PowerBuilder
User’s Guide.

Popup and child windows

Description

Uses

76

Popup windows and child windows are supporting windows that display on
top of a parent window. Child windows always display within the parent
window; popup windows can display outside the parent window. Both types of
windows close when the parent window closes.

Child windows
The windows displayed in HTML pages by the PowerBuilder window plug-
in and the PowerBuilder window ActiveX must be child windows.

Popup windows and child windows are handy for displaying additional pieces
of information (or providing additional services) that support users’ activities
as they work in a particular main window.

Child windows are the foundation of a PowerBuilder window plug-in or
PowerBuilder windows ActiveX application.



Chapter 3 The Building Blocks

lllustration

Ingredients

Implementation

Documentation

MDI frames

Description

Uses

inancial Manager tor William B Belt

Activity as of 7/24/37

Posting Statement
Date ltem Amount Balance nce
01/01/96 . o (83500) $4441.00  $4476.00
04/01/36 , R 1$E0.0N)... A 20100 1600
04/317% 6 or
/01 -

Account# 071255636

ygTormeo

04701/

04/01/36 t ; s

04/01/96 E o0d, Gas & Cash

04/01/96 i [Gifts / Charties

04/01/96 ular “frcome

Page1of5 finterest Paid

i A [Medical / Dental

Monthly Budget

“|NonE ssential Extras

]
¥
v
v
v

Popup and child windows display one or more controls, with which users
interact in conjunction with the parent window.

Window painter

To learn about popup and child windows, see the PowerBuilder User’s Guide.
To learn about the PowerBuilder window plug-in and window ActiveX, see
Building Internet Applications with PowerBuilder.

MDI frames are containers for multiple document windows. When placed
inside one of these frames, main windows act as sheets that users can easily
position.

MDI frames are useful in many applications where users need a convenient and
organized way to work with multiple main windows. Additionally, MDI
frames allow you to open multiple instances of the same sheet, such as multiple
customer orders.

77



User interface

Hlustration

Ingredients

Implementation

Documentation

Controls

Standard controls

Description

Uses

78

MDI frames contain zero or more sheet windows. An MDI frame window must
use a menu and can optionally display a toolbar.

Window painter

To learn about MDI frames, see the PowerBuilder User’s Guide

PowerBuilder provides a wide range of controls you can place in a window to
hold the information users need, and to implement the interactions users
perform.

You can use virtually any combination of controls in a particular window,
depending on the activities that the window is intended to support. And you can
arrange them in whatever way best suits your needs.

FOR INFO For more information on the various kinds of controls, see the
PowerBuilder User’s Guide.

PowerBuilder supplies a wide range of window controls that you use to create
an application’s user interface.

Your application uses window controls to display and edit values and to allow
users to request a particular action.



Chapter 3 The Building Blocks

Kinds

There are controls for:

¢

Displaying and/or manipulating values These controls include:

StaticText
SingleLineEdit
MultiLineEdit
RichTextEdit
EditMask

Making choices These controls include:

ListBox

PictureListBox
DropDownListBox
DropDownPictureListBox
CheckBox

RadioButton

Initiating actions These controls include:

CommandButton
PictureButton

Presenting your data PowerBuilder provides a special kind of control
called a:

DataWindow

that you use when you want a window to display formatted data. By the
way, when you design a DataWindow, you’ll specify that it is to
present the data it accesses in a style that’s just like one or more of the
standard PowerBuilder controls. As a result, the look and use of what’s
inside your DataWindow control will be consistent with the look and
use of the other controls around it in the window.

Presenting sophisticated lists These controls include:

ListView
TreeView

Showing information graphically These controls include:

Graph
HScrollBar
VScrollBar

Dressing up a window These controls include:
Line

Oval

Rectangle

79



User interface

RoundRectangle
Picture

¢ Organizing other controls These controls include:

GroupBox
Tab
Implementation Window painter
User Object painter
Documentation To learn about standard PowerBuilder controls, see the PowerBuilder User’s
Guide
Controls you define
Description In addition to standard controls, you can also define your own controls. You

base these controls on one or more of the standard PowerBuilder controls and
store them as application components called visual user objects. Then you can
include these custom-made controls in any windows you want.

Uses Use visual user objects to provide reusable window controls. For example, you
might define a custom visual user object that contains a set of precoded
command buttons, such as OK and Cancel.

lllustration

Ingredients A visual user object that contains precoded object properties, event scripts, and
object functions.

Kinds Standard visual user objects Contain a single control
Custom visual user objects Contain one or more controls

Implementation User object painter
Window painter

Documentation To learn about visual user objects, see the PowerBuilder User’s Guide.

80



Chapter 3 The Building Blocks

Controls from external sources

Description

Uses

Ingredients

Implementation

Documentation

Menus

Menu bars

Description

Uses

You can use controls that were created outside PowerBuilder (in DLLs) by
defining them as user objects too. Then you can include these external controls
in any windows you want.

PowerBuilder also enables you to put ActiveX controls (also called OLE
custom controls) in your windows by using its own versatile OLE control.
You’ll learn more about that later in this chapter.

Use controls from external sources to provide specific functionality not
provided by PowerBuilder controls.

A DLL that contains controls.

User Object painter
Window painter

To learn about external controls, see the PowerBuilder User’s Guide.

Another way to let the user initiate actions in a window is to use menus. A
menu lists commands (menu items) that are currently available so that the user
can select one. PowerBuilder provides several methods for providing access to
menu item commands:

¢ On the window’s menu bar
¢ On the MDI frame’s toolbar

¢ Inside the window as a popup

In many of the windows you design you’ll want to display a menu of one or
more items across the top in the menu bar.

The menu bar enables users to move through menu items and pull down
submenus (dropdown menus) that you’ve defined for each one.

81



User interface

llustration

Implementation

Documentation

Toolbars

Description

lllustration

Implementation

Documentation

Popup menus

Description

Uses

82

Anchor Rt
Bay Company

Menu painter

To learn about menu bars, see the PowerBuilder User’s Guide.

If the window is an MDI frame, you can optionally define a toolbar to
accompany the menu. The toolbar displays buttons corresponding to one or
more menu items, giving the user an alternative way to select those items.

Menu painter

To learn about toolbars, see the PowerBuilder User’s Guide.

Sometimes you may want to let users initiate certain actions by popping up a
menu within the window. A popup menu lists its items vertically, enabling
users to move up or down to select the item they want.

Popup menus can be handy for giving users quick access to a subset of the most
common actions they perform in the window or to just those actions that apply
to the current control.



Chapter 3 The Building Blocks

lllustration

Implementation

Documentation

Not all types of windows support menus (for example, response windows
don’t), but in those that do (such as main windows) you can use a menu bar,
popup menus, both, or neither. It all depends on your design goals for the
window.

Menu painter
PowerScript painter
Window painter

To learn about popup menus, see the PowerBuilder User’s Guide.

User interface style

After you choose an application architecture, you need to design the user
interface.

Choosing a user-interface style To design a successful user interface for
an application—one that enables people to interactively and smoothly
perform all of their required activities—you must do more than just draw up
the individual windows that support those activities. You’ve also got to
figure out the connections among your windows, including:

¢ How users are to navigate through the application from one window to
another

¢ Which windows should be available to use at a given moment

¢  Whether a particular window will depend in some way on one or more
other windows

The best way to start addressing these issues is to decide on the user interface
style that your application is to follow.

Your choices There are three user interface styles you’ll usually consider
using. Each one will give your application a particular look and feel:

83



User interface

+ SDI Single Document Interface
¢ MDI Multiple Document Interface

¢ Combination The application uses an SDI approach to implement
some of its activities and an MDI approach to implement others

Determining which style best suits your application depends on a lot of factors,
among them: the nature of the application’s data, the complexity of the
application’s processing, the preferences of the application’s users, and the
conventions (if any) you’re obligated to follow.

Single Document Interface (SDI)

Description

Uses

llustration

Ingredients

Implementation

84

In this style, users typically work with one main window at a time to perform
an activity (although that window may display various popup or child windows
to do supporting chores as a user works). When users want to perform a
different kind of activity, they go to a different main window to do it.

SDI may be appropriate if your application is very simple, especially if it deals
with only one kind of data and the user needs to perform only one operation at
a time.

i '~ Customer

Main windows
Menus (optional)
Supporting windows (response, child, popup)

Window painter
Menu painter



Chapter 3 The Building Blocks

Documentation To learn about SDI applications, see the PowerBuilder User’s Guide.

Multiple Document Interface (MDI)

Description In this style, users work within a frame that lets them perform activities on
multiple sheets of information. MDI tends to be most useful in applications
where users require the ability to do several different things at a time.

Uses MDI is the most popular choice because of the flexibility it gives the user and
ail of the built-in services it provides. You should probably think about using
it by default.

Consider this
In the world of graphical applications, many of the more prevalent
commercial products (including PowerBuilder) use an MDI interface.

lllustration 7 DWSyntor 6.0
Ingredients Frame window
Frame menu and toolbar
Sheet windows (main windows)
Sheet menus and toolbars
Supporting windows (response, child, popup)
Implementation Window painter
Menu painter
Documentation To learn about MDI applications, see the PowerBuilder User’s Guide.

85



Application programming interface

Application programming interface

Description

Uses

86

PowerBuilder is an extremely flexible development environment. There are
many ways to code an application, and you can place your application logic in
various places. In general you want to create reusable code, and you can
achieve varying degrees of reuse depending on where you place application

logic:
Code placement Example Reusability
Within the events that The Clicked event of a Save None

occur when the user
requests the associated
action

command button or menu item
saves changes in all
DataWindows on a window

Within user events for
the window in which
the user requests
actions

The Clicked event of a Save
command button or menu item
calls the window’s ue_Save
event, which saves changes for
all DataWindows on the window

Within the window

Within window
functions for the
window in which the
user requests actions

The Clicked event of a Save
command button or menu item
calls the window’s wf_Save
function, which saves changes
for all DataWindows on the
window

Within the window

Within custom class
user objects

The Clicked event of a Save
command button or menu item
might call the user object’s
of_Save function, which saves
changes for all DataWindows
on a window

Application-wide

Because custom class user objects provide the most reusability, you should use
them to code application-wide functionality. When you create these objects,
you define a set of user object functions (called an application programming
interface, or API) that applications call to perform application processing.

Custom class user objects are the foundation upon which you build

PowerBuilder server applications. By using custom class user object to contain
your application logic, it can be used in all architectures.

By coding application processing logic in custom class user objects, you
separate the user interface from the application programming interface. This
separation allows you to create applications using any of the architectures
described in Chapter 2, "What You Can Build".



Chapter 3 The Building Blocks

lllustration

Ingredients

Implementation

Documentation

- —

Single-tier
appligation

_ v S
owerBuilder execution

= environment

Custom class

| |
SIS = N -
=5 *H% e _’1 RH“@[{ user object T‘_ = % =

] | I m—
Client application ~ OLE automation | Two-tier application
(PB or non-PB) server (local or ‘
remote) -
[ = = =
| = T
I= = = I
**** = = — = 1
== ' = gl Server |
- os |
P ﬂﬂm — M _ ﬂﬂﬂ“ﬂf . database i
Web browser Web server PowerBuilder Database server —~—— —

server application

Multitier application

Custom class user object

PowerBuilder application (single-tier, two-tier, or multitier)
PowerBuilder server application

Web.PB

C++

User Object painter
PowerScript painter
Project painter

FORINFO  To learn about using custom class user objects to define an API,

see Application Techniques. To learn about events and functions, see
"Scripting" next.

87



Language

Language

Scripting

Events

Description

88

You write scripts using PowerScript, the PowerBuilder language. Scripts
consist of PowerScript commands, function calls, and statements that perform
processing. You code scripts for events and functions.

Events and functions are similar in many ways:

¢ They can be triggered or posted

¢ They can have arguments and return values

¢ You can create user events and user-defined functions
¢ They can both call ancestor events and functions

But there are a few differences:

¢ Calling a nonexistent event fails silently; calling a nonexistent function
creates an execution time error

¢ Functions can be overloaded; events cannot

¢ Events can be extended; functions cannot

PowerBuilder provides an approach to flow-of-control in an application that
puts users in charge. PowerBuilder applications are event driven—they wait
to see what actions a user takes in a window to determine what processing to
perform.

How it works Whenever the user does something involving one of the
application’s user interface components (such as a window, control, or
menu item), that action triggers a particular event. For example, each of the
following actions triggers a different event:

Doing this Triggers

Clicking on a particular The Clicked event of that
CommandButton control in a window CommandButton control

Clicking on a particular menu item in The Clicked event of that menu item
a window’s menu




Chapter 3 The Building Blocks

Uses

Doing this Triggers

Modifying the value in a particular The Modified event of that
SingleLineEdit control of a window SingleLineEdit control

Closing a particular window The Close event of that window

What an event does When an event is triggered, the application executes a
corresponding script, which contains any processing logic you’ve written
for that event.

Each kind of user-interface component has its own set of several events that
can happen to it. For instance:

This component Has

A CommandButton About a dozen different events, including: Clicked,
control GetFocus, and LoseFocus

A menu item Just a couple of events: Clicked and Selected

A SingleLineEdit control | About a dozen different events, including: Modified,
GetFocus, and LoseFocus

A window More than 25 different events, including: Open,
Close, Resize, Timer, and Clicked

Events can have arguments (that your scripts can use to determine how to
process) and return values (that your scripts can set to control how processing
continues).

Defining events in user objects
You can define events within a user object. This enables you to encapsulate
the event processing within the object to which the processing applies.

Your job as a designer is to figure out all the events of interest that might occur
in your application and provide appropriate processing logic for each event (in
its script). To do that, you’ve got to know more about the various kinds of
events there are.

Although this quickly adds up to a lot of events, you don’t have to worry about
handling every one. In many cases, you’ll need to write scripts for just one or
two of the events of a particular component (and sometimes you won’t need
any for that component).

89



Language

Kinds

Implementation

Documentation

Functions

Description

20

If you need to take control Letting users drive the flow of processing is
appropriate most of the time, but on occasion you’ll want the application to
temporarily take control. In these situations, you can write code in the script
of one event that programmatically causes another event to occur. When
doing this, you can either:

& Trigger the event so that its script executes right away, or

o Post the event to a queue so that its script execution is deferred (until
after the scripts of any earlier events have executed)

You can also define your own events for any particular component and then
programmatically trigger or post them to execute their scripts. These are called
user events, and they can be useful for such things as:

+ Extending the processing of other event scripts by serving as
subroutines

¢ Responding to certain lower-level messages (from your operating
environment) that PowerBuilder doesn’t provide as standard events

Hardware events

Additional window events you can define

User events that use a predefined PowerBuilder ID
User events with arguments and/or return values

PowerScript painter

To learn about events, see the PowerBuilder User’s Guide. To learn about
triggering and posting events, see the PowerScript Reference. For more on
defining user events, see the PowerBuilder User’s Guide.

You don’t have to put all the code you write in event scripts. In many cases
you’ll find that it’s better to separate out certain chunks of code to be
independent of any particular event.

For these cases, PowerBuilder gives you the ability to create your own
functions, known as user-defined functions. When you create a user-defined
function, you’ll specify:

¢ The arguments it requires when you execute it (if any)
¢ The PowerScript code it is to execute

¢ The value it is to return (if any)



Chapter 3 The Building Blocks

Uses

Ingredients

Kinds

Implementation

Documentation

You can then call that user-defined function from event scripts or from other
user-defined functions.

Defining functions in user objects

You can define functions within a user object. This enables you to
encapsulate the event and function processing within the object to which the
processing applies.

Use functions to create independent processing units. This enables you to
centralize processing logic that’s required in multiple situations, organize your
application’s code so that it’s easier to maintain and extend, or simply break an
especially long body of code into more manageable subroutines.

Choosing between user events and user-defined functions

User events and user-defined functions are similar in many respects. For
instance, both can have arguments and return values. Both can be triggered
or posted. As a result, you can use either technique just as successfully in
many coding situations.

But user events and user-defined functions do have some differences that
may cause you to choose one instead of the other in certain cases.

Arguments
PowerScript code
Return values

PowerScript functions
External functions
Global functions
User object functions

PowerScript painter
Function painter

To learn about the difference between user events and user-defined functions,
see Application Techniques. To learn about PowerScript function syntax, see
the PowerScript Reference.

91



Language

PowerScript
Description A script is a body of procedural code that you write in the PowerScript
language to express the processing logic to perform. Most scripts are relatively
short (tens of lines long, not hundreds), since they just need to express the
processing for particular events and functions and not for the whole
application.
Ingredients of a script PowerScript is a high-level language that provides
several different syntactic ingredients you can use to write the code you
need. These ingredients include:
¢ Variable declarations PowerBuilder supports many data types, as
well as arrays and structures of variables. It also offers several levels of
scoping that you can choose from for each variable you declare.
¢+ PowerScript statements These statements mostly provide flow-of-
control mechanisms (such as branching and looping) that you can use
to steer the processing in a particular script.
¢ Function calls PowerScript supplies a multitude of built-in functions
you can call. You’ll use these built-in functions to handle much of the
processing in your scripts.
When calling functions you can either trigger or post them, just as you
do when calling events. Triggering executes a function right away.
Posting defers execution of a function (until earlier functions and
events have executed).
PowerBuilder also lets you create your own functions and then call
them in your scripts.
¢ Embedded SQL statements If you need to perform some table
processing and you’ve decided to use SQL (instead of DataWindows)
to do it, you can embed the appropriate SQL statements in a script.
PowerBuilder lets you embed standard as well as dynamic SQL
statements, and it supports DBMS-specific clauses and reserved words.
¢ Comments PowerBuilder makes it easy to insert comments in your
code. You can use comments to document how a script works or to
temporarily block out some code that you don’t want to execute.
Uses You use scripts to perform your application’s processing.

92



Chapter 3 The Building Blocks

Illustration

Script for Clicked event of the

Script for
cb_new CommandButton RButtonDown event
\\ of the w_customer
: window
SIVILILLLTIIII I 1 1107777 47707000 701770071777 707777777777 /
/7 / ! ¥

// To begin, check whether user did any typing in dw detail / |

/A DavaWindow COntrl sy rrryii717/10001707100001 1111771070 0077010170000000011707
// will be lost if 7/ p

/

" . .| // 1If the user clicks the right mouse button while the /
// We've coded a wi // pointer is on the window itself (but not on a control), /
// wf warndataloss) | // then display a popup menu. The popup menu we want to  /
o // display for the Customer window consists of the m_guide /
III10100071717717171 ) portion of the m_custmenu menu that we already display /

// in the window's menu bar. /
IF wf_warndataloss(| ,, /

TILILLTTILIITITITILTLLLIT T TIITIL IS I A1 0101770077007 7 00007717

RETURN
// First, determine the current position (x and y coordinates)

END IF // of the pointer.

integer 1i x, 1i y
II1IIIIIITEIIIr1777 - -
//

i x = Pointerx ()

PR 1
// Next, some init 1i_y = Pointery ()

/
sy // Now, display the m_guide menu as a popup menu at the current,

// pointer location.
// Reset the]

// disable i m_custmenu.m_guide.PopMenu ( li_x, 1li_y )

dw_list.Reset()
dw_list.enabled = false [

 Secript for Clicked
sle_lname.text = "" ya event of the

—
/7

// First, loop through each row of the dw_orddetail
// control and delete each one from the primary buf

//

integer 1i counter
long 11 detailrows

// Determine how many item rows are currentl
// dw_orddetail.

11 detailrows = dw_orddetail.RowCount ()

// Now loop through them.
FOR 1i_counter = 1 TO 11 detailrows

// Delete the current item row.

93



Language

// This script uses embedded SQL to find the highest Cust_Id
// currently stored in the database. It then adds 1 to that
// number to provide the Id for a new customer.

integer 1i_fetched_id = 0
SELECT Max ("customer"."cust_id" )
INTO :1i_fetched id

FROM "customer"
USING sqglca;

IF sglca.sglcode >= 0 THEN

IF IsNull(li_ fetched_id) THEN
1i fetched id = 0
END IF
1i fetched_id ++
ELSE
1li_fetched_id = -1
END IF .
-
-
Ingredients Events
Functions
Implementation PowerScript painter
Documentation To learn about coding event and function scripts, see Application Techniques.

To learn about event and function syntax, see the PowerScript Reference.

Objects

Objects you build

Description The components you create in PowerBuilder (such as windows, menus, and
user objects) are not merely pieces of a particular application, but self-
contained objects.

94



Chapter 3 The Building Blocks

Uses

Implementation

Documentation

System objects

Description

Uses

That means each one encapsulates the particular characteristics and behaviors
(properties, events, and functions) that are appropriate to it. It also means that
they support other standard object-oriented capabilities, including inheritance
and polymorphism.

You use objects for practically everything in an application. By leveraging
PowerBuilder’s object-oriented capabilities, you can benefit in several
important ways—in particular by making your work more modular, reusable,
extensible, flexible, and powerful.

Window painter
Menu painter
User Object painter

To learn about PowerBuilder objects, see the PowerBuilder User’s Guide.

In addition to the objects you create in the painters, PowerBuilder provides a
number of system objects. These objects aren’t maintained in libraries.
Instead, they’re managed by PowerBuilder itself (although you can work with
them in your scripts).

Each system object contains properties, events, and functions that your
application can use to perform the appropriate processing.

Internally, everything is an object

The objects you create in the painters inherit from PowerBuilder system
objects. For example, when you create a new window, PowerBuilder
creates an object internally that inherits from the system object Window.

You use these objects throughout your application:

¢ Controls placed on a window are descendants of system objects (for
example, CommandButton or ListBox)

¢ The application object contains properties of type Transaction,
DynamicDescriptionArea, DynamicStagingArea, Error, and Message,
each of which is a system object

¢ You can define and create variables of a system object type. This
provides access to the object’s properties, events, and functions

You can even use the User Object painter to create customized descendants of
certain system objects:

95



Language

Kinds

Implementation

Documentation

Libraries

Description

Uses

96

¢ Standard visual user objects Descend from any of the visual
controls, such as CommandButton, DataWindow, ListBox, and
TreeView

¢ Standard class user objects Descend from certain system objects,
such as Transaction, DataStore, Error, and Message

You use these user objects to extend the object’s basic capabilities by defining
additional properties, events, and functions.

There are many types of system objects. For a complete list of properties,
events, and functions for each system object, use the Browser.

Application painter
PowerScript painter
The Browser

To learn about standard class user objects, see the PowerBuilder User’s Guide.

A library is the container in which you collect a particular set of objects for use
in your applications. It’s where an object goes when you save it in a painter and
where a painter gets an object you ask to open. PowerBuilder maintains each
library you use in its own file in your operating system. PowerBuilder libraries
are files with an extension of PBL.

To help you organize these libraries and control the objects they contain,

PowerBuilder includes a tool called the Library painter.

A PowerBuilder application contains one or more libraries in its library list.
This list names all the libraries that contain objects used in an application. How
you organize your libraries is up to you. For instance, you can:

¢ Create one or more libraries for a particular application
¢ Use the same library in more than one application

¢ Store libraries in different locations, including your computer or a
server

¢ Store objects related to a particular task in the same library



Chapter 3 The Building Blocks

Illustration

Ingredients

Cross-platform use of libraries
Libraries and the objects in them are platform independent. That means you
can move or share your PBL files across platforms (such as Microsoft
Windows, Apple Macintosh, or UNIX) during an application development

project.

ABNC_V5

38 abnc_oid
— d_custall
Bl d_custdetail

&l d_report_custref
a8 proL_ord_v5
ot 'q_custorders
-8 q_custpickorder
|~ &% u_app_actman

— &2 w_about_ord
B w_startup_ord
~B w_tour_banner
LB w_tour_movies

B d_ordsummary
& d_report_compref

—ﬂ abnc_com.pbl  Anchor Bay Nut Company framework: library of base classes and common objects for all ABNC applications
- £ abnc_ent pbi Anchor Bay Nut Company Order Entry application: library for data entry branch of the app (SDI-based)
I8 abnc_gde.pbl Anchor Bay Nut Company guide services: library of applets for use in any ABNC application

[~ abnc_motpbl  Anchor Bay Nut Company motivational applications: library of objects for 3 small toy applications

-8 abnc_ord pbl Anchor Bay Nut Company Order Entry application: library of general objects for the app

4/5/36 09:3¢:57 (4580) Anchor Bay Nut Company - Order Entry application object
4/5/96 03:34:48 (4051) Lists all of the customers in the database
03:

4.5, g i
4/5/9609:34:48 (6380) Report of basic customer info for quick reference

1/22/9610:31:20 {4020) Project configuration for the ABNC_DRD application Version 5
3/18/94 11:44:04 (642) Selects all orders for a particular customer

3/16/94 14:34:06 (966) Selects a particular order for a customer

4/5/96 09:34:57 (4963) Application-specific functions and variables for the Activity Manager

— & u_tabpg_amroadmap 4/5/36 03:34:58 (23485) Application-specific "roadmap’ tab page for the Activity Manager

4/5/96 03:34:53 (10896) About the Order Entry application

4/5/9603:35:00 (10814) Welcome/logon window for the Order Entry application

4/5/96 09:35:01 (3758) Used in the Tour Movies activity to display a welcoming banner message
4/5/36 03:35:01 (12761) Lets users run a selection of movies that give narrated tours of the app

(@3 abnc_rev.pbi Anchor Bay Nut Company Order Entry application: library for data review branch of the app (MDI-based)

4/5/96 09:34:52 (26431) Shows a summary of all info about a particular order
4/5/96 03:34:52 (4500) Report for sales staff reference ~ it's a composite of 3 other reports

1 Ed_report_custiabels 4/5/96 03:34:52 (4134) Report that makes mailing labels from stored procedure data source

Whenever you save an object in a library, PowerBuilder actually stores two
forms of that object:

This form of

an object Is

Source A syntactic representation of the object, including any
script code it contains. You can think of this as the
object’s definition

Compiled A pseudocode (Pcode) representation of the object that’s

ready for execution. Every time you save an object in a
painter, PowerBuilder automatically compiles that object
into Pcode for you

Pcode is an interpreted language that makes it quick and
easy for you to test-run objects from the PowerBuilder
development environment. It is also one of the compiler
options available to you (along with machine code) when
generating the executable version of your application

97



Language

Implementation Library painter
Documentation To learn about libraries and the Library painter, see the PowerBuilder User’s
Guide.

Object-oriented programming

Classes

Description In object-oriented programming, you create reusable classes to perform
application processing. These classes include properties and methods that
define the classes’ behavior. To perform application processing, you create
instances of these classes. PowerBuilder implements these concepts as
follows:

¢ Classes PowerBuilder objects, such as windows, menus, window
controls, and user objects

¢ Properties Object variables and instance variables

¢ Methods Events and functions

Documentation To learn more about object-oriented programming in PowerBuilder, see
Application Techniques.

Inheritance

Description Using inheritance, objects can be derived from existing objects, with access to
their visual component, data, and code. Inheritance saves coding time,
maximizes code reuse, reduces maintenance, and enhances consistency. A
descendent object is also called a subclass.

Uses You can use inheritance for windows, menus, and user objects. Implementing
inheritance maximizes code reuse and helps to create more reliable and
maintainable applications.

98



Chapter 3 The Building Blocks

lllustration

Implementation

Documentation

Encapsulation

Description

Uses

lllustration

Implementation

Documentation

r;/_master Tl
[I— j —
[ ]

‘ w_sheet !
| S
i w_ord_sheet ; w_prod_sheet
e | |

Window painter
Menu painter
User Object painter

To learn more about inheritance, see the PowerBuilder User’s Guide.

An encapsulated object contains its own data and code, allowing outside access
as appropriate. This principle is also called information hiding. PowerBuilder
enables and supports encapsulation by giving you features that can enforce it,
such as access and scope. But PowerBuilder itself does not require or
automatically enforce encapsulation.

Use encapsulation to restrict direct access to an object’s instance variables. In
place of direct access, provide object functions to set and read the instance
variables. These object functions can then perform all necessary error checking
and validation before modifying or accessing the instance variables.

u_display J All access to is_style is

Instance variables through these two
Private String is_style /1 functions

Object functions L
Public of_SetStyle /
Public of_GetStyle

Window painter
Menu painter

User Object painter
PowerScript painter
Function painter

To learn more about encapsulation, see Application Techniques.

99



Language

Polymorphism

Description

Uses

lllustration

Implementation

Documentation

With polymorphism, functions with the same name behave differently,
depending on the referenced object. Polymorphism enables you to provide a
consistent interface throughout and within all objects.

By implementing polymorphism, your application uses a consistent API. A
function can have the same basic name in every object for which it is enabled.

Both user objects contain
an of_SetStyle function

u_report \u_printpreview
of_SetStyle of_SetStyle

PowerScript painter
Function painter

To learn more about polymorphism, see Application Techniques.

Visual and nonvisual classes

Visual classes

Description

Uses

Implementation

Documentation

Nonvisual classes

Description

100

These objects are the windows, controls, and menus that you build for the user
interface of a graphical application.

Use visual objects to create your application’s user interface.
Window painter
Menu painter

User Object painter

To learn about class user objects, see Application Techniques.

PowerBuilder also lets you develop and use nonvisual objects. Effective use of
nonvisual objects is essential in professional-quality applications.



Chapter 3 The Building Blocks

Uses

Implementation

Documentation

Class libraries

Description

To fully benefit from PowerBuilder’s object-oriented capabilities, consider
implementing class user objects (also known as nonvisual user objects):

L

Standard class user objects Inherit their definitions from built-in
PowerBuilder system objects, such as Transaction, Message, or Error.
Creating customized standard class user objects allows you to provide
powerful extensions to built-in PowerBuilder system objects.

Custom class user objects Inherit their definitions from the
PowerBuilder NonVisualObject class. Custom class user objects
encapsulate data and code. This type of class user object ailows you to
define an object class from scratch. To create server applications and
make the most of PowerBuilder’s object-oriented capabilities, you must
use custom class user objects. Typical uses include:

*

Business rules The custom class user object contains functions
and variables that implement business rules. You can either create
one object for all business rules or create multiple objects for
related groups of business rules.

Distributed computing The custom class user object contains the
functions that run on the server.

Service object The custom class user object contains functions
and variables that are useful either in a specific context (such as a
DataWindow) or globally (such as a collection of string-handling
functions).

Global variable container The custom class user object contains
variables and functions for use across your application. You
encapsulate these variables as appropriate for your application,
allowing access directly or through object functions.

User Object painter
Function painter

To learn about class user objects, see Application Techniques.

To get the most out of PowerBuilder, you’ve got to take full advantage of its
object-oriented features. And the best way to do that is to base each project you

begin on a class library.

101



Language

Uses

Ingredients

102

There’s some variation in how people use the term class library (and a related
term, application framework), but at minimum it refers to a collection of base
classes (ancestor objects) from which you can inherit most of the application-
specific objects you need to develop for your project.

The idea is that you define these base classes with the characteristics and
behaviors (properties, events, and functions) you commonly want in the
objects you construct. That way, when you create an object inherited from one
of them, the new object automatically gets all the characteristics and behaviors
of that base class.

Using a class library is much more than just a convenient way to copy features
from one object to another. That’s because inherited objects don’t duplicate the
features of their base classes, but refer to them. This makes it easy for you to
apply global changes, since modifications you make in a base class are
automatically picked up by its descendants. And when you execute your
application, it can perform more efficiently because those inherited features are
loaded just once (via the base class).

In other words, using a class library can help make your applications better in
a variety of ways (more consistent and modular, easier to fix and extend, faster
and leaner). It can also make them much quicker to build, since you’ll be able
to reuse so much of your work on each one.

If you don’t already have an appropriate class library available to use on your
projects, you can either:

¢ Develop one yourself, or
¢ Acquire one

Developing a class library This involves using the PowerBuilder painters
to create one or more libraries in which you then store the ancestor objects
you want to serve as base classes.

As you develop your ancestor objects, try to include only those features that
will be needed in most of the descendent objects you’ll inherit from them. This
will help ensure efficiency. And avoid creating ancestor objects that don’t
really serve some purpose (because you don’t want to introduce superfluous
levels of inheritance into your applications).

If you’re part of a team, you may have a particular team member in the role of
object manager. This object manager is typically responsible for overseeing the
development and maintenance of a class library for your organization.



Chapter 3 The Building Blocks

Acquiring a class library There are a variety of class libraries and
application frameworks available commercially for use with PowerBuilder.
If you don’t have the time or resources to develop one yourself, you might
consider one of these. This includes the PowerBuilder Foundation Class
Library produced by Powersoft (described next).

PowerBuilder Foundation Class Library (PFC)

Description The PowerBuilder Foundation Class Library (PFC) is an extensive set of base
classes that you can extend to create class libraries for:

¢ Corporate use

¢ Departmental use

¢ Individual applications

PFC includes:

¢ Base classes for all window types

¢ Bases classes for all standard visual user objects

¢ Base classes for all standard class visual user objects

¢ Custom class user objects that implement DataWindow, windows,
application, and utility services

¢ Utilities, including a DataWindow properties dialog

PFC is included in the Advanced Developer Toolkit.

Uses Use PFC as the basis for your own class library.

Documentation To learn more about PFC, see the PFC User’s Guide.

Special-purpose libraries

Description Sometimes you may need to enhance your application by including one or
more special-purpose libraries. These are libraries whose objects can be used
in an application to enable it to perform some specialized kind of processing,
such as interaction with a particular software product or service.

103



Language

Uses

104

If you need to develop PowerBuilder applications that work with Lotus Notes,
you might consider using the PowerBuilder Library for Lotus Notes, which is
produced by Powersoft. Another special-purpose class library from Powersoft
is the Web.PB class library, which contains functions that help you create
HTML. Other vendors also offer special-purpose libraries that you can use in
your PowerBuilder applications.



Chapter 3 The Building Blocks

Data access

Database connections

Description To access the data it needs, your application can connect to one or more
databases (or other data sources) of various kinds. It can also control when to
connect to a database, when to disconnect from it, and how that connection
should operate.

Uses The requirements of your application probably call for access to at least one
table. In fact, it’s usually the case that applications need to access several.

What makes this access tricky in a client/server environment is that these tables
are likely to be in different places and different formats. Specifically:

¢ The tables may be stored in one or more databases

¢ Those databases may be located in a variety of locations: on the client
computer, on one or more server computers, or on a mix

¢ Those databases may be implemented under a variety of DBMSs

lllustration

T
| Sybase | Sybase
tdatabase | database
Server Server
computer \ computer
Sybase
database ‘\\
~ N ‘\\‘ l_- —=
. EE
Client computer
(¥SQL%, ol running your
Anywhere J application
(_database _
Documentation To learn more about database connections, see Connecting to Your Database.

105



Data access

Database interfaces

Description

Uses

106

PowerBuilder provides an approach to data access that enables you to
successfully handle this potential database diversity in the applications you
build. It does this by separating the DBMS-specific aspects of data access from
an application to make it as independent as possible. This means you can focus
on the logical use of a table in your application instead of how that table is
implemented in one particular database or another.

Introducing the database interfaces PowerBuilder handles DBMS
specifics in a separate software layer that you install on the client computer
along with your application. This layer consists of various database
interfaces, each of which knows how to talk to a particular kind of DBMS
and how to take advantage of the unique features of that DBMS. When your
application requests any kind of access to a database, it relies on the
appropriate database interface (depending on the DBMS for that database)
to carry out the operation.

What this approach does for you The major benefit of this layered
approach to data access is that it helps insulate your application from the
complicated and potentially dynamic logistics of the typical client/server
environment. As a result, the data access you design into your application
can be:

¢ Flexible You can make your application independent of a database’s
location or DBMS. That way, if the database needs to be moved (from
client to server, from server to client, or from server to server) or
migrated to a different DBMS, the application itself doesn’t have to be
disrupted.

Adapting your application to such changes can often be just a matter of
pointing it to the database’s new location and database interface.

¢ Consistent You can work with all of the tables in your application in
the same way—using the same table-processing features—regardless of
the DBMSs that are involved. (You’ll learn more about these table-
processing features of PowerBuilder in just a moment.) That means you
don’t have to design DBMS-specific processing routines.

Even in cases where you want to take advantage of capabilities unique
to certain DBMSs (such as stored procedures, outer joins, referential
integrity checking), you’ll still use consistent PowerBuilder techniques
to do so. Of course, if you’re planning to migrate to a different DBMS
later, you should make sure it also supports those capabilities (or you’ll
need to modify the application).



Chapter 3 The Building Blocks

Illustration

Ingredients

Kinds

Setting up the databases to access As you’d expect, before your
application can access particular databases and their tables, they must exist.
In lots of cases the necessary database design, definition, and population
work may have already been done (by you or someone else such as a DBA)
through DBMS facilities or other design tools.

But if this database setup work is not yet done or if some modifications are
needed, you can use certain painters in PowerBuilder to help do the job.

| [
| T | e | s On the client
@m dm E -.r" computer or
m U ' on server
DBMS DBMS DBMS computers

“ I R

Powersoft
database
interfaces

oDBC
interface

On the client
computer

Your application

DBMS-specific Powersoft database interface
ODBC interface

Notice that the preceding figure shows two kinds of database interfaces that
PowerBuilder provides for your application to use:

107



Data access

Implementation

Documentation

Transactions

Description

Uses

Implementation

Documentation

108

The ODBC interface You’ll design your application to use this
interface if you want to access one or more ODBC-compliant databases.

ODBC is the Open Database Connectivity API developed by Microsoft
to give applications standardized access to diverse data sources (which

are usually databases, but can also be other kinds of files such as

spreadsheets or text files). The ODBC interface that’s included with
PowerBuilder was developed by Powersoft to let your applications talk
to ODBC, which in turn talks to the actual data sources.

¢ The Powersoft database interfaces Sometimes you won’t want to

access a particular database via ODBC, or won’t be able to because that

database is not ODBC-compliant. For these cases, Powersoft offers a
variety of native interfaces, each of which knows how to talk to a
specific DBMS (such as Sybase SQL Server or Oracle).

So if you want to access a SQL Server database, for example, you’ll
design your application to use the Powersoft SQL Server interface.

You can design your application to use any combination of these database
interfaces.

PowerScript painter
Database painter

To learn about database interfaces, see Connecting to Your Database.

PowerBuilder lets you access the database either within the scope of a
transaction or outside a transaction.

In either case, PowerBuilder provides a Transaction object that you use to
handle the communication between your application and the database. The

Transaction object makes it easy for you to control the nature of your database
connection (such as whether to work in transaction mode) and to monitor the

status of the connection.

When you do use transactions, you can manage their scope by performing
commits and rollbacks as needed.

PowerScript painter

To learn about transactions and the Transaction object, see Application
Techniques.



Chapter 3 The Building Blocks

Embedded SQL

Description You can embed SQL statements in your application scripts to manipulate the
rows in the database. PowerBuilder supports both standard and dynamic SQL.

Uses PowerBuilder supports all of the usual features of this industry-standard
language, along with DBMS-specific syntax and some powerful extensions of
its own. In general, you should think about using embedded SQL in places
where your design calls for row manipulation without the need for display.

illustration
SQL SELECT
statement... SQL UPDATE
statement...
SQL DELETE
Your application statement...
SQL INSERT
statement...
Implementation PowerScript painter
Database Administration painter
Select painter
Query painter
Documentation To learn about using embedded SQL in PowerBuilder scripts, see the

PowerBuilder User’s Guide.

109



Data access

DataWindow objects

Description

Uses

lllustration

Ingredients

110

DataWindows are a central feature of PowerBuilder that you’ll want to use for
most of the table processing your application design requires. That’s because
DataWindow objects contain both the intelligence to do robust row
manipulation (including creation, retrieval, updating, and deletion) and the
presentation (user-interface) abilities to let people see and work with those
rows:

You can use DataWindows for just about all your application display needs.
They work well for data display, data input, onscreen and printed reports, and
for displaying nondatabase data.

Most of the time you’ll want to use DataWindows (instead of embedded SQL)
to perform your application’s data access tasks.

Table Table Table

r Data

manipulation
J——, intelligence
Presentation
intelligence
B
— - —
| —
s | —1

DataWindow

You use the PowerBuilder DataWindow painter to build DataWindow
objects. A DataWindow object consists of a data source (which controls the
data that is accessed) and a presentation style (which controls display).
Additionally, a DataWindow object provides many advanced features, such as
formatting, validation, computed fields, filtering, sorting, and so on.



Chapter 3 The Building Blocks

Implementation

Documentation

Data sources

Description

Uses

Implementation

Documentation

Presentation styles

Description

DataWindow controls and DataStores

To use the DataWindow object in an application, you place it in either a
DataWindow control (in a window) or a variable of type DataStore. The
DataWindow control and DataStore system object provide properties,
events, and functions that you use to control a DataWindow object.

DataWindow painter

To learn about defining DataWindow objects, see the PowerBuilder User’s
Guide. To learn about programming in DataWindow objects, see Application
Techniques.

A data source controls the data displayed in a DataWindow object. This can be:

¢ A SQL SELECT statement The DataWindow object generates the
SQL needed to do the appropriate data access. You can fine-tune the
SQL yourself if you have special requirements. All standard SQL
capabilities are supported, as well as DBMS-specific syntax.

¢ A PowerBuilder Query object The DataWindow object uses a
PowerBuilder Query object for the SQL SELECT statement.

¢ A database stored procedure The DataWindow object uses a DBMS-
specific stored procedure to access data.

¢ An external source You define the columns to display and populate
the DataWindow object programmatically at execution time using an
external data source, such as a file.

You can define the DataWindow object just for retrieval or for update (insert,
update, and delete) too.

DataWindow painter

To learn about DataWindow data sources, see the PowerBuilder User’s Guide.

A DataWindow object can present the accessed data in a wide variety of styles:

Tabular Composite

111



Data access

Freeform Graph
Grid Crosstab
Label OLE 2.0
N-up RichText
Group

When generating the DataWindow object in your selected presentation style,
PowerBuilder uses extended attributes from the Powersoft repository to
determine various display characteristics of the columns in the DataWindow
object.

Uses DataWindow object presentation styles have two main uses:

¢ Online data entry and display The DataWindow’s advanced display
and validation support allow you to create an intuitive, easy-to-use
interface

¢ Online and printed reports You can also use DataWindows to present
many types of online and printed reports

lllustration Here are a few examples of DataWindow presentation styles:

Tabular

\ Employees by Department

112



Chapter 3 The Building Blocks

Grouped

Product Reference

Category Hame Price
Assortment
Filberts and Friends $19.95
Muts of the World $2555
MNuts-To-You Holiday Assotment  $29.95
Nutty Neighbor Welcome Basket $2395
Children’s
Cashew Caboose Kid's Pack $13.95
Dinosaur Adventure Mix $9.95
General
Almonds Ahoy! $15.95
Brazilnut Bonanza $17.95
Carnival of Cashews $21.95
Filbert Fiesta $18.95
Hooray for Hazelnuts $14 95
Macadamia Mountain $21.95
Peanuts Peanuts Peanuts! $1595
Pecans on Parade §15.95
Graph
Orders By Andmri!ul
Date ey

Lompany

For December 2, 1995

Cashew Cahioose

Daily Quantity Sold

Dincsas Aduen

2500

Fllber! Fles

Daily Product Mix by Weight
{5 products represented)
60%%

102%%

aT1%

3192%

Fllberis and Fr
Null Nelghbior

; ‘. casnelH] oinos I Aiver ] miver B wue

{

ot

113



Data access

Freeform

i Enter Employee Informat

Nested
Customer Profiles Page 8o 10
Apr 11, 1996
Profile for Customer 12 Street: 8300 Papaya Lane Zip: 91100
Gomer Grant City:  Honolulu Phone: (809)555-3300
State: HI Disc %: 20
Order History
Summary for Entry Date Tax Ship Total Balance  Ship Date Status
Order: 000-003 12/02/95 $11.57  $2013 $263.10 $113.10  12/08/95  Fulfilled
Details: Totar Totar Backorder
fem  Product Unit Price Quantity  Weight Price  Quantity
1 10 Filbert Fiesta $1895 10 550  $183.50 0
2 17 Filberts and Friends $19.95 B 255 99975 0
Totals for Amount Ordered:  $263.10
Customer Balance Due:  $113.10

114



Chapter 3 The Building Blocks

Crosstab
Sum of
Units Ordered Product
(by State) Category
State Assortment  (Children's General Test-Market Grand Total
AT 0 1 0 1
CA 7 9 17 10 43
GA 23 0 12 1 36
HI 5 0 10 0 15
L 0 1 4 0 5
LA 3 0 2 0 5
MA 3 0 1 0 4
Mi 0 0 10 0 10
MT [ 0 0 0 6
OH 9 2 = 0 17
TX 0 B 4 0 10
ut 1 0 4 0 5
VT 5 0 4 2 1"
Grand Total: 62 18 75 13 168
Average: 5 1 6 1 13
Label
Bosworth Bush Svetlana Jackson
2 Raspberry Row 501 Lemon Lane
Boston MA 02108 Salt Lake City UT 60330
—
Homer Washington Lana Lincoln
5 Raisin Road 2 Grape Way
Stowe VT 03384 Buzzard Gulch MT B4689
Suzie Lincoln May-Lin Jefferson
93 Strawberry Street 18 Plum Drive
Sebastian FL 20988 Seattle WA 72891
Kiki Carter Claudio Adams
43 Orange Street 90 Pear Place
Kansas City MO 28800 San Francisco CA 79802
Implementation DataWindow painter
Documentation To learn about presentation styles, see the PowerBuilder User’s Guide. To

learn about online and printed reports, see "Printed reports" on page 131. To
learn about extended attributes, see "Detailed features" next.

115



Data access

Detailed features

Description

Uses

Implementation

Documentation

116

DataWindows support many other useful features, including:

Category Features

Cosmetics Column formatting (such as: fonts, size, position, edit styles)
Display formats

Validation rules

Newspaper-style column snaking

Display Display of additional objects (computed fields, text, shapes, and
SO on)

Headers, footers, and summaries

Navigation through the data (scrolling, tabbing, paging, and so
on)

Filtering, sorting, and grouping of rows

Prompting for selection criteria

Query by example

Performance Retrieval options (retrieving as needed, retrieving to disk)

Save data with object

Data sharing with other controls (DataWindow controls,
DataStores, or RichTextEdit controls)

Data entry Data entry and manipulation (by the user or by the application)
Error and status checking
Internet HTMLTable property contains retrieved data in HTML Table
syntax

Cascading style sheet defines formatting for HTMLTable
GenerateHTMLForm saves rows in HTML Form syntax
Saving as HTML allows you to save rows in an HTML table

Other Dynamic DataWindow object modification at execution time

Saving to files (including HTML, Powersoft report, and tab-
delimited)

Printing

This abundance of features makes the DataWindow the object of choice when
developing database retrieval and display applications. You have design time
and execution time control over retrieval, display, and update.

DataWindow painter
PowerScript painter

To learn more about DataWindow object features, see the PowerBuilder
User’s Guide.



Chapter 3 The Building Blocks

DataWindow controls

Description A DataWindow control is a visual control (available in the Window painter)
that you place on a window. One of the control’s properties is DataObject,
which specifies the DataWindow object to display in the control. A
DataWindow control includes both events and PowerScript functions. For
example, the Retrieve function retrieves rows, as specified in the DataWindow
object’s data source.

Uses Use a DataWindow control any time you want to display a DataWindow object
in a window.

Alternatively, you can create a standard visual user object based on the
DataWindow control. Code event scripts and define user events and user-
defined functions as necessary. Then place the user object in the window
instead of a simple DataWindow control. This enables you to encapsulate
common processing in one place.

At execution time, you can dynamically switch the DataWindow object in a
DataWindow control.

Illustration DataWindow painter Window painter
DataWindow object —_— ‘ |
———————— ) T ‘ |
\ |
. . | |
DataWindow object { DataWindow control ‘ l
DataWindow object Window i
Implementation Window painter
User Object painter
Documentation To learn more about DataWindow controls, see the PowerBuilder User’s

Guide.

117



Data access

DataStores

Description

Uses

Hlustration

Implementation

Documentation

118

A DataStore is a standard class user object that you can use to contain the data
retrieved for a DataWindow object. One of the DataStore’s properties is
DataObject, which specifies the DataWindow object used to retrieve rows
contained in the DataStore. A DataStore includes both events and PowerScript
functions. For example, the Retrieve function retrieves rows, as specified in the
associated DataWindow object’s data source.

Use a DataStore any time you need to retrieve data but do not need to display
it. Define a variable of type DataStore, create it, assign the DataObject property
(the name of the DataWindow object), set the Transaction object, and retrieve
TOwsS.

Alternatively, you can create a standard class user object based on DataStore.
Code event scripts and define user events and user-defined functions as
necessary. Then use the user object as the variable’s data type (instead of
DataStore). This enables you to encapsulate common processing in one place.

At execution time, you can dynamically switch the DataWindow object in a
DataStore.

Distributed computing
DataStores are particularly useful in distributed server applications.

DataWindow painter PowerScript painter

[
{ DataWindow object | DataStore  Inv_ds

— T Inv_ds = CREATE DataStore

| ) ) ) | Inv_ds.DataObject = "d_emplist”
| DataWindow object | Inv_ds. Retrieve() ‘
L N L ]

DataWindow object

PowerScript painter

To learn about DataStores, see Application Techniques.



Chapter 3 The Building Blocks

Text and binary files

Description

Uses

Implementation

Documentation

Clipboard

Description

Uses
Implementation

Documentation

Although most of the data output from a typical application is directed at
databases, you may also need to write data to other kinds of files. For example,
users might want the application to save certain data in spreadsheet files that
they can use later in another program.

PowerBuilder provides built-in functions that you can code in scripts to write
(and in some cases read) many different kinds of files from your application,
including:

Text files

Microsoft Excel spreadsheets

HTML files

.
¢
¢ Lotus 1-2-3 spreadsheets
L4
¢ dBASE files

You can also access text and Excel database data using ODBC drivers.
PowerScript painter

To learn about reading and writing different kinds of files, see the
PowerBuilder User’s Guide.

Your application may need to exchange data with other applications on the
user’s system. One way to do this is with the system clipboard.

Use the clipboard to cut, copy, and paste information.
PowerScript painter

To learn about clipboard functions, see the PowerScript Reference.

119



Program access

Program access

Executable programs

Description

Uses
Implementation

Documentation

Help systems

Description

120

In some situations you may want your application to start up another
executable application. This might be another PowerBuilder application, a
commercial application (such as a word processor or spreadsheet tool), a batch
file, a shell, or a shell script.

For these situations, PowerBuilder provides a Run function you can code in
any script to run that executable application.

On Macintosh

If your application is going to be deployed on the Macintosh, you may want
it to execute one or more AppleScript scripts to perform some of the
processing it requires. For these situations, PowerBuilder provides:

¢ The ability to edit and test AppleScript scripts in the PowerBuilder file
editor as you develop your application

¢ The DoScript function, which you can code in any of the application’s
scripts to execute the appropriate AppleScript scripts at execution time

Use the Run function to start other, independently executing programs.
PowerScript painter

To learn about the Run function, see the PowerScript Reference.

Users typically expect to be able to access online Help modules when running
an application to get information about what that application does and how to
use it. You should determine what these Help modules need to contain as well
as how they should be organized and formatted.

Once your end-user Help modules are written, you can display them in an
application with the ShowHelp PowerScript function.

PowerBuilder supports the Microsoft Windows Help model.



Chapter 3 The Building Blocks

Uses

Ingredients

Implementation

Documentation

E-mail systems

Description

Uses

Implementation

Documentation

Use the ShowHelp PowerScript function to access the Help files for your
application.

PowerBuilder supports online Help display for all platforms. However, on
Macintosh and UNIX, you must compile the Help files with vendor-specific
tools:

¢ On Macintosh QuickHelp from Altura Software, Inc.
¢ On UNIX HyperHelp from Bristol Technology

Contact the vendors for information on acquiring and using these tools.

PowerScript painter
Help authoring tool
Help compiler

To learn more about online Help, see Application Techniques.

One of the requirements of your application may be that you make it
mail-enabled. Basically, this involves giving your application the ability to
send e-mail messages to people and/or receive e-mail messages from them
through an electronic mail system.

PowerBuilder supports access to any e-mail system that uses the mail standard
called MAPI (messaging application program interface). To build this access
into your application, you write some appropriate scripts using a few special
mail functions that PowerBuilder provides.

MAPI is currently supported in the Windows environments only.
PowerScript painter

To learn more about MAPI, see Application Techniques.

121



Program access

Component object model

Description

Uses

Ingredients

Documentation

122

The component object model (COM) provides a framework for
communication between software components. It allows programs to share
both data and program functionality. PowerBuilder provides containers that
call upon COM-based server components to display and manipulate COM
objects.

Before you choose COM as your solution, make sure it is supported by the
program you want to talk to and by your execution platform (not all platforms
support COM).

You can use COM-based technologies to:

¢ Embed or link to data (objects) from other programs inside the
windows of your application. That way you can enable a user to point
to one of those objects and automatically invoke the capabilities of its
corresponding program to edit it.

PowerBuilder provides an OLE control that you can use to do this.

¢ Connect your DataWindows to other programs in a few different ways,
including: using the OLE presentation style to define a DataWindow,
inserting an OLE object within a DataWindow, or placing an OLE
column in a DataWindow.

¢ Enable your application to talk to another program under the covers—
through a technique called automation—to invoke commands or move
data back and forth.

Implementing automation (formerly called OLE automation) involves
writing some appropriate scripts that use OLE features of the
PowerScript language. These features enable you to develop
automation clients as well as servers.

¢ Include ActiveX controls (formerly called OLE custom controls or
OCX controls) in your application.

You can place ActiveX controls in your windows by using the OLE
control that PowerBuilder provides. You can also insert them in your
DataWindows.

PowerBuilder OLE control

PowerBuilder OLEObject and OLEControl objects

Microsoft OLE 2.0

OLE server application

ActiveX controls

PowerBuilder automation server components and other automation servers

To learn about OLE in PowerBuilder, see Application Techniques.



Chapter 3 The Building Blocks

Compound documents

Description

Uses

Ingredients

Implementation

Documentation

ActiveX controls

Description

Uses

OLE allows you to create compound documents with components from several
server applications (such as Word, Excel, and Visio). The user can activate the
control and edit the object using functionality provided by the server
application. You can also use automation to programmatically activate the
object and send commands to the server. PowerBuilder supports both in-place
and offsite activation.

PowerBuilder allows you to link or embed OLE objects into a window:

¢ When you embed an object, your application stores its data

¢ When you link an object, your application contains a reference to the
data

Use compound documents to integrate OLE server functionality into your
application.

OLE server application
PowerBuilder OLE control

Window painter
DataWindow painter
User Object painter

To learn about object linking and embedding, see Application Techniques.

You can add ActiveX controls to a window or user object. An ActiveX control
is a server itself that processes user actions according to scripts you program in
PowerBuilder. These scripts call functions and set properties that belong to the
ActiveX. Typically, an ActiveX control presents its own user interface,
although this is not required.

Use ActiveX controls to enhance your application with precoded functionality.
ActiveX controls range from simple visual displays (such as a meter or a
gauge) to single activities that are customizable (spellchecking words or
phrases) to working environments (image acquisition with annotation and
editing).

123



Program access

lllustration

Ingredients

Implementation

Documentation

ActiveX control
PowerBuilder window or user object

Window painter
User Object painter

To learn about ActiveX controls in PowerBuilder, see Application Techniques.

OLE in DataWindows

Description

Uses

Ingredients

Kinds

124

A DataWindow can include an object that is a container for an OLE object. The
container stores information about the application that created the object, and
it can launch the application to display or modify the OLE object.

The container can fill the whole DataWindow (when you create a new
DataWindow using the OLE presentation style) or it can exist alongside other
objects in a DataWindow (when you add an OLE object to an existing
DataWindow). You can also read OLE data from a blob column in a database
and display the objects in the DataWindow. These mechanisms support both
OLE 2.0 and OLE 1.0 servers.

Use OLE in DataWindows to display data in an OLE server application and to
display blob columns.

OLE server application
DataWindow object

You can use OLE objects in DataWindows in the following ways:



Chapter 3 The Building Blocks

Implementation

Documentation

Automation

Description

Uses

Ingredients

Implementation

¢ OLE object in a DataWindow The OLE object is displayed in its
container object with the data and other objects, such as bitmaps or
text. You can associate it with data in a particular row, the rows on a
page, or with all rows. You choose which columns in the DataWindow
are transferred to the OLE object. You can add an OLE container
object to a DataWindow that uses any presentation style that supports
multiple DataWindows (this does not include Graph and RichTextEdit
presentation styles).

¢ OLE presentation style The OLE presentation style is similar to an
OLE object in a DataWindow. The difference is that the OLE container
is the only object in the DataWindow. The underlying data is not
presented in column objects, and there are no other objects such as
bitmaps or text. The OLE object is always associated with all rows in
the DataWindow.

¢ OLE database blob column OLE objects that are stored in the
database in a blob column are displayed in each row of the
DataWindow.

DataWindow painter

To learn about OLE in DataWindows, see Application Techniques.

Automation allows applications to use services from other COM objects.
PowerBuilder can function as an automation client component or as an out-of-
process automation server component.

Use automation to call functions and manipulate properties in all types of local
and remote COM objects. You can use PowerBuilder to create both client
components and server components.

You use automation (formerly called OLE automation) to manipulate:
¢ Insertable objects in the PowerBuilder OLE control
¢ ActiveX controls

¢ Programmable objects in server components

Server application (which could be PowerBuilder)
PowerBuilder OLE control
Client application (which could be PowerBuilder

Window painter

125



Program access

Documentation

Structured storage

Description

Uses

Ingredients
Implementation

Documentation

DDE

Description

Uses

126

User Object painter
PowerScript painter

To learn about automation in PowerBuilder, see Application Techniques.

In addition to COM interfaces for controls and automation, PowerBuilder
provides an interface to the underpinnings of COM-based data storage.

COM data is stored in objects called streams, which live in objects called
storages. Streams and storages are analogous to the files and directories of a
file system. By opening, reading, writing, saving, and deleting streams and
storages, you can create, combine, and delete your COM objects.
PowerBuilder provides access to storages and streams with the OLEStorage
and OLEStream object types.

When you define OLE 2.0 controls and OLEObject variables, you have full
access to the functionality of server applications and OLE automation, which
already provide you with much of OLE’s power. You may never need to use
PowerBuilder’s storage and stream objects unless you want to construct
complex combinations of stored data.

PowerBuilder OLEStorage and OLEStream objects
PowerScript painter

To learn about structured storage in PowerBuilder, see Application
Techniques.

Dynamic Data Exchange (DDE) enables your application to converse with the
external program by exchanging commands and data. Your application can act
either as a DDE client (which asks the other program to perform some
commands or provide some data) or as a DDE server (which responds to
command or data requests from the other program).

Although you can use DDE to communicate with external programs, you
typically use OLE to perform this functionality.



Chapter 3 The Building Blocks

Documentation

PowerBuilder supports DDE on the Windows platforms and on UNIX when
communicating with another application built with Wind/U from Bristol
Technology.

To learn about DDE, see Application Techniques.

DLL and shared-library functions

Description

Uses

Illustration

Implementation

Documentation

Your application can call a function in a Windows DLL (dynamic link library)
or shared library (on UNIX and Macintosh). To do that, you define and execute
an external function.

Sometimes you may want to implement a particular service that your
application requires by executing a DLL function—a function located outside
your application in a dynamic link library and written in a language other than
PowerScript. Then you can execute it simply by calling that external function
in a script the same way you call any other PowerBuilder function.

DLL or
shared .__
‘ library J DW
-

/
/

/
‘E Script: ) /

MyExternaIFunctlon ()

|
|
R

PowerScript painter

To learn about external functions, see Application Techniques.

127



Program access

C++ classes

Description

Uses

Implementation

Documentation

You can define C++ classes and then call their methods from your
PowerBuilder application.

To give you extra power for implementing application features in which
execution speed is particularly critical or lower-level programming is required,
Powersoft provides a facility called the C++ Class Builder. If you have this
facility and you know how to code in C++, you can work with the User Object
painter in PowerBuilder to define C++ classes, compile them, and store them
in DLLs. Then you can execute the methods of those C++ classes from your
PowerBuilder applications as user object functions.

The C++ Class Builder is available on the Windows 95 and Windows NT
platforms only.

User Object painter
C++ Class Builder

To learn about the C++ Class Builder, see C++ Class Builder.

Database stored procedures

Description

Uses

128

If you’re using a database that provides stored procedures, you may want to
execute one or more of them to implement some of the services that your
application requires. For stored procedures that don’t return a result set, you
can do this by defining external functions in PowerBuilder that refer to them
(similar to what you do to access DLL functions, but with a few more
housekeeping steps). Then you can execute those stored procedures by calling
the corresponding external functions in your application’s scripts.

The process of executing a stored procedure this way is known as a remote
procedure call (RPC).

Use remote procedure calls to execute database stored procedures that don’t
return a result set.



Chapter 3 The Building Blocks

lllustration
: .
~=——_ Stored i
Database procedure ; -
|
J Script: /L}
e |
I— N
l g MyExternalFunction () l
' Your application
Implementation PowerScript painter
Documentation To learn about remote procedure calls, see Application Techniques.

Distributed PowerBuilder objects

Description An important system architecture topic is how an application’s components are
to be partitioned across your computing environment. Partitioning essentially
means organizing an application so that the appropriate components reside and
execute on the appropriate client or server computers. The different
partitioning approaches you can take include:

Partitioning
approach Description

One tier This is the simplest approach because it doesn’t actually
involve partitioning. In a single-tier application, the user
interface and logic components reside and execute on
the client computer, and data is accessed from a local
database

This is appropriate for standalone applications that
don’t need to take advantage of server computers

Two tier This is the most basic client/server approach. In a two-
tier application, the user-interface and logic components
reside and execute on the client computer, but data is
accessed from server databases

129



Program access

Uses

Ingredients

Documentation

130

Partitioning
approach Description
Multitier This is the full client/server approach, also known as the

distributed approach. In a multitier application, the
user-interface components reside and execute on the
client computer along with some of the logic
components. But other logic components reside and
execute on server computers

Both the client and server components of a multitier
application can access data from server databases

PowerBuilder supports all three of these techniques. If you’re building a small-
or medium-size application, chances are you’ll go with the one-tier or two-tier
approach. The multitier approach is typically for large-scale applications. It
adds complexity to your system but also a lot of power and versatility. To
implement the multitier approach, you can use PowerBuilder’s distributed
computing capabilities.

Web.PB

Web.PB is a specialized usage of PowerBuilder’s distributed computing
capabilities, with the Web.PB CGI, NSAPI, or ISAPI interface program
functioning as a distributed PowerBuilder client.

Server application
Client application
Communications drivers

To learn about PowerBuilder’s distributed computing capabilities, see
Application Techniques.



Chapter 3 The Building Blocks

Output

Printed reports

Description

Uses

Users often want an application to generate one or more paper reports that they
can distribute, mark up, or simply read later away from the computer. For
instance, maybe they want to print an expense report, a parts list, a form letter,
or a bill.

If your application needs to generate any reports, you’ve got to figure out what
data to include in each one and how to format that data given the report’s

purpose.

To design reports in PowerBuilder, you use DataWindow objects. The
advantage of using DataWindow objects is that you can create reports that
contain both:

¢ The intelligence to access the appropriate database tables and retrieve
the rows you want, and

¢ The presentation abilities to format this row data as you require

Report objects

PowerBuilder also has a Report object, which is actually a specialized
DataWindow object. A Report object has no database update capability;
other than that, all other DataWindow features apply (data sources,
nragantatinn gtulag and ca an) VA g aDannet ~nhiante 3m Nata W ia A
prostiiiauuvlil Styivs, alu SU vllj. 1 Uu usdt l\ClJUlL UUJTLL 11 ata vy 1liuuw

controls and DataStores just the way you use DataWindow objects.

Within the context of printed reports, DataWindow objects and Report
objects are identical.

Once you’ve designed a report in PowerBuilder, you’re ready to use it in an
application. This typically involves:

1 Displaying the report in a window through a DataWindow control (just
as you do for any other DataWindow).

2 Letting users do one or more of the following:
¢  Examine the formatted report output in print preview mode

¢ Send the formatted report output to a printer

131



Output

Kinds

Implementation

Documentation

File generation

Description

Uses

132

¢ Save the formatted report output in one of a variety of file formats,
including as a Powersoft report (PSR) file

PowerBuilder provides built-in functions that you can code in scripts to
implement these services.

PowerBuilder supports a wide variety of presentation styles and also gives you
the ability to customize just about any aspect of a particular report. For
examples of selected presentation styles, see "Presentation styles” on page 111.

DataWindow painter
Window painter
Report painter

To learn about creating reports in PowerBuilder, see Application Techniques.

You can generate files in various formats from your DataWindows.
You can do this:
¢ Within the PowerBuilder development environment, or

¢ Within an application (from a DataWindow control, DataStore, or
DataWindow plug-in)

PowerBuilder provides built-in functions that you can code in scripts to write
(and in some cases read) many different kinds of files from your application:
Tab-separated text files

Microsoft Excel spreadsheets

Lotus 1-2-3 spreadsheets

HTML table syntax

dBASE files

The clipboard (of your operating environment)

Powersoft report (PSR) files

Comma-separated values (CSV)

Windows metafiles (WMF)

SQL syntax

® 6 6 & & 6 6 o o o o

Data interchange format (DIF)



Chapter 3 The Building Blocks

Implementation

Documentation

PSR

Description

Uses

Implementation

Documentation

HTML

Description

Uses

Ingredients

Implementation

DataWindow painter
PowerScript painter

To learn about saving files from the DataWindow painter, see the
PowerBuilder User’s Guide.

You can save the contents of a DataWindow as a Powersoft report (PSR) file.
A PSR file contains the DataWindow definition as well as data.

You can display a PSR file in the following places:

¢ The InfoMaker Report painter (if you double-click a PSR file and you
have installed InfoMaker, InfoMaker opens automatically)

¢ A DataWindow control
¢ A DataStore

¢ The DataWindow plug-in

DataWindow painter
DataWindow plug-in
PowerScript painter

To learn about PSR files, see the PowerBuilder User’s Guide.

You can save the contents of a DataWindow in HTML format, as either a table
or a form. The DataWindow object also contains a cascading style sheet to
preserve certain formatting when viewed in a browser that supports style
sheets.

You can generate the HTML as a string or as a file, depending on how you plan
to use it:

¢ Use Web.PB to return HTML dynamically Generate a string variable

¢ As a static URL Generate a file

DataWindow painter
PowerScript painter
Web browser

DataWindow painter

133



Output

Documentation

Printing

DataWindows

Description

Uses

Implementation

Documentation

Rich text
Description

Uses

Implementation

Documentation

Printer setup
Description
Implementation

Documentation

134

PowerScript painter

To learn about HTML and DataWindows, see Application Techniques.

You can print the contents of a DataWindow (or Report object) from a
DataWindow control, DataStore, or DataWindow plug-in.

Virtually all applications need to print reports. In addition to print capabilities,
your application can also let the user view the DataWindow in print preview
mode and provide previewing services, such as zooming.

DataWindow painter
PowerScript painter
DataWindow plug-in

To learn about printing DataWindows, see the PowerScript Reference.

You can print the contents of a RichTextEdit control.

You use a RichTextEdit control to provide word processing capabilities within
a PowerBuilder application. Print capabilities are required for this type of
functionality.

DataWindow painter
Window painter

To learn about RichTextEdit controls, see Application Techniques.

Your application can display the system’s printer setup dialog.
PowerScript painter

To learn about displaying the printer setup dialog, see the PowerScript
Reference.



Chapter 3 The Building Blocks

Print jobs

Description

Implementation

Documentation

Data pipelines

Description

Uses

In addition to automatically printing a DataWindow’s contents, PowerBuilder
provides functions that allow you to manually construct pages and send them
to a printer.

PowerScript painter

To learn about printing, see Application Techniques.

Sometimes applications require the ability to migrate data from one place to
another. To handle requirements such as these, PowerBuilder provides data
pipelines. A data pipeline is an application component you can design to pump
data from one or more source tables to a new or existing destination table. The
source and destination tables you specify can be in either the same database or
separate databases (even if they’re different kinds of databases that involve
different DBMSs).

Data pipelines are a lot like DataWindows when it comes to their built-in data
access and manipulation intelligence. And the steps you need to take to make
them work in your application are similar in several ways too.

You might use data pipelines to:

¢ Create a new sales summary table in your database by joining various
regional sales tables and extracting particular data from them, or

¢ Copy a payroll table from the server database to a local database so
that the application can access it without needing the network

135



Output

lllustration
Source Destination
database database
] i
Data pipeline
Data Data Data Data
Your application
Implementation Pipeline painter
PowerScript painter
Documentation To learn about data pipelines, see Application Techniques.

136



Chapter 3 The Building Blocks

Environment

Application logistics

Description

Uses

The Application object is the entry point into a standard PowerBuilder
client/server application. It is a discrete object that is saved in a PowerBuilder
library—just like a window, menu, user object, or DataWindow object.
However, not all PowerBuilder applications use the Application object:

Type Use Application object
PowerBuilder client application Yes

Distributed PowerBuilder server application Yes

PowerBuilder window plug-in application Yes (Open event, Close event,

and global variables only)

PowerBuilder window ActiveX application Yes (Open event, Close event,

and global variables only)

PowerBuilder automation server No

It’s in the application object that you define application-level characteristics
and behaviors such as:

¢

The list of libraries (library search path) for your application

PowerBuilder uses this list to find objects when you’re developing the
application and executing the application; it searches through libraries
in the order in which you list them

The icon that your operating system is to display to represent the
executable form of your application

The processing that you want to perform when:

¢ A user starts (opens) youi application

¢ A serious (system) error occurs while a user is in your application
¢ A user ends (closes) your application

The variable types you want to use by default in your application for
certain system objects

The fonts you want to use by default in your application for various
purposes (including text, data, headings, and labels)

The tasks that an Application object performs include:

137



Environment

Implementation

Documentation

+ Opening your application The Application object provides an Open
event that’s triggered when a user starts your application. You must
write a script for this event to specify the initial processing you want
the application to perform (which typically includes opening a window).

¢ Trapping system errors The Application object provides a
SystemError event that’s triggered when a serious application error
occurs during execution. By default, PowerBuilder displays a message
box (with the appropriate error number and text) in response to such an
error. But if you prefer, you can write a script for this event to perform
your own error processing.

¢ Closing your application The Application object provides a Close
event that’s triggered when a user ends your application. You should
write a script for this event to specify any cleanup processing you want
the application to perform (which might include disconnecting from a
database or writing to an INI file).

Application painter
User Object painter
Window painter

To learn about Application objects, see the PowerBuilder User’s Guide.

Application context

Description

138

PowerBuilder can run in many contexts, including:
¢ PowerBuilder execution time (default)

¢ PowerBuilder window plug-in

¢ PowerBuilder window ActiveX

The PowerBuilder Context object allows applications to access certain host
(non-PowerBuilder) services. The Context object creates service objects
appropriate for the current execution context (native PowerBuilder,
Powerbuilder window plug-in, PowerBuilder window ActiveX). This allows
your application to take full advantage of the execution environment.

The Context object services are:
¢ Context information service
¢ Keyword service

¢ Internet service (available on Windows 95 and Windows NT only)



Chapter 3 The Building Blocks

Uses

Ingredients

Implementation

Documentation

Platform support

Description

Use this feature to enhance the capabilities of your applications. For example,
by using the functions provided by the services, you can:

L

¢

Determine the execution context, modifying the application’s look,
feel, and processing depending on the environment

Open the default browser, displaying a URL from within a
PowerBuilder application

Control the browser from within a PowerBuilder application (Internet
Explorer only)

Access application arguments and environment variables

Powersoft may provide additional services after the release of PowerBuilder
Version 6.0. Additionally, you can write your own services by creating
descendants of the service object.

.
*

*

PowerBuilder execution environment
PowerBuilder window plug-in
PowerBuilder window ActiveX

Internet browser, such as Internet Explorer (Version 3.0 or higher) or
Netscape Navigator (Version 3.0 or higher)

PowerScript painter

To learn about the Context object, see Application Techniques.

PowerBuilder provides application development capabilities on a variety of
computing platforms:

Product Description

PowerBuilder Lets you build graphical client/server applications on Microsoft
for Windows Windows 3.x, Windows 95, and Windows NT

You develop applications using PowerBuilder running on either
Windows 95 or Window NT Version 4.0. You can deploy
applications on these platforms or on Windows 3.x

139



Environment

Uses

Documentation

Portability

Description

140

Product Description

PowerBuilder Lets you build graphical client/server applications on the Apple
for Macintosh | Macintosh

You develop applications using PowerBuilder running on a
PowerPC Macintosh using Mac OS Version 7.5 or higher. You
can deploy applications on this platform or on 68K series
Macintosh processors

PowerBuilder | Lets you build graphical client/server applications on UNIX
for UNIX You develop and deploy applications using PowerBuilder
running on any of these systems:

¢ Sun Solaris

¢ HP/UX

¢ IBM AIX

If you’re developing applications for just one of these operating systems, you
can simply use the appropriate PowerBuilder product and focus on that
platform. But if your applications need to work on multiple operating systems,
you can take advantage of the cross-platform features built into the platform-
specific versions of PowerBuilder.

As you would expect, each platform-specific version of PowerBuilder can
build applications for its own platform. But no matter which platform you’re
developing on, the PowerBuilder applications you create can be edited or
deployed on any of the other platforms. So, for example, an application
developed on PowerBuilder for Windows can run on the Macintosh and UNIX

To learn how to build an application for multiple platforms, see Application
Techniques.

PowerBuilder provides binary compatibility of libraries across all the
platforms. That means you can develop your application on one of these
platforms and then immediately port it for further development or testing on
any of the others.

When deploying a cross-platform application, you must decide whether to
create Pcode or machine code:



Chapter 3 The Building Blocks

Documentation

¢ Pcode Portable across every platform supported by PowerBuilder,
including Microsoft Windows (16-bit and 32-bit), Apple Macintosh,
and UNIX. Pcode applications are generally smaller than machine code
applications but may not perform as well.

¢ Machine code Requires you to generate and maintain complete
versions of your executable application on each platform. But you may
be willing to do this to ensure the best performance.

For more on Pcode and machine code, see "Code generation" on page 144.

Cross-platform applications

Description

Uses

Implementation

Documentation

Platform features

You can also go a step further and code your application to take advantage of
features specific to each platform. For instance, PowerBuilder lets you
conditionally test for the current platform, so you can adjust application
features accordingly.

This enables you to build a cross-platform application—one that’s maintained
in a single code base but used on multiple platforms—without sacrificing
functionality.

PowerScript painter

To learn about executing code for specific platforms, see Application
Techniques.

Most application features are supported on every platform. But a few are
platform specific. This table shows the features that PowerBuilder supports on
the various platforms:

Win Win 95
Category Feature 3.1 and NT | Macintosh | UNIX
General DDE X X
OLE X X
Rich text X X X X
Powersoft reports X X X X
(PSR files)
Mail (MAPI) X X

141



Environment

142

Win Win 95

Category Feature 3.1 and NT | Macintosh | UNIX

C++ Class Builder X X

External functions X X X X

AppleScript X

PowerBuilder X X X X

Foundation Class

Library (PFC)
Image file RLE, BMP, and X X X X
formats CUR images

ICO images X X X

WMF images X X X

PICT images X
Distributed Client X X X X
computing

Server X X
Internet Save rows as HTML | x X X X
support

Netscape plug-ins X X X

PowerBuilder X

window ActiveX

Web.PB X X X




Chapter 3 The Building Blocks

International support

Description

Documentation

PowerBuilder includes features that enable you to internationalize and localize
an application. These features include:

Unicode support

Japanese version of PowerBuilder

Right-to-left enabled PowerBuilder

Localized execution environment for certain European languages
Portability

Translation Toolkit

Localized PFC

® & & ¢ ¢ o o

For complete information, see "Internationalization" on page 21.

Initialization files and registries

INI files

Description

Uses

Implementation

Documentation

You may want your application to store user preferences or default settings
across sessions. A typical way to do this is to use an initialization (INT) file or
(on Microsoft Windows 95 and Windows NT) the registry.

PowerBuilder provides functions that enable your application to read from and
write to INI files.

You typically use INI files to store database connection settings, application
settings, and user information.

The PowerBuilder initialization file
PowerBuilder uses an initialization file to store application and database
information.

PowerScript painter

To learn about using INI files, see Application Techniques.

143



Environment

The Windows registry

Description
Uses

Implementation

Documentation

Code generation

Description

Uses

144

PowerBuilder provides functions that enable your Windows 95 and Windows
NT applications to read from and write to the registry.

You typically use the registry to store database connection settings, application
settings, and user information.

PowerScript painter

To learn about using the registry, see Application Techniques.

You can generate executable files and/or dynamic libraries. You can include
resources in those files or keep them as separate files.

When you plan an application, one of the fundamental issues to think about is
the compiler format in which you’ll want that application generated.
PowerBuilder offers two alternatives from which you can pick:

¢ Pcode An interpreted language that’s supported on all PowerBuilder
platforms

¢ Machine code Platform-specific executable code

Use these guidelines to help you decide whether Pcode or machine code is right
for your project:

¢ Speed If your primary goal is to optimize execution speed, then
choose machine code. It will perform better than Pcode during many
kinds of processing.

Exception: Pcode does have one speed advantage—it is faster to
generate than machine code. That makes it especially handy for
developers when they want to quickly create an executable version of
an application for testing.

¢ Size The files generated for Pcode are smaller than those generated for
machine code. If your application is to be deployed on computers
where file size is a major issue, then you might decide to give up the
speed of machine code and choose Pcode instead.



Chapter 3 The Building Blocks

Ingredients

Implementation

Documentation

Pcode

Description

¢ Portability Pcode can be useful for cross-platform applications. In
fact, it is portable across every platform supported by PowerBuilder,
including Microsoft Windows (16-bit and 32-bit), Apple Macintosh,
and UNIX.

Machine code is, of course, platform-specific. That means it requires
you to generate and maintain complete versions of your executable
application on each platform. But you may be willing to do this to
ensure the best performance.

An executable application that you create in PowerBuilder can consist of one
or more of the following pieces:

¢ An executable file You will always create exactly one executable
(EXE) file for any PowerBuilder application you want to deploy.

At minimum, this file contains code that enables your application to
run as a native application on its target platform. Depending on the
packaging model you choose for your application, the executable file
may also contain compiled versions of objects, an execution library list,
and resources (such as bitmaps) used by the application.

¢ Dynamic libraries You can optionally reduce the executable file’s size
by creating PowerBuilder dynamic libraries for the application’s PBLs.
Pcode dynamic libraries use the PBD file extension; machine code
dynamic libraries use the DLL extension.

¢ Resources You can optionally include resource files (such as
DataWindow objects, bitmaps, icons, and cursors) in the executable file
or dynamic libraries. This allows the application to find resources that
are not part of the application and saves you the trouble of deploying
the individual bitmap, icon, and cursor files.

Project painter

To learn about PowerBuilder code generation, see the PowerBuilder User’s
Guide.

Pcode (pseudocode) is an interpreted language that’s supported on all
PowerBuilder platforms. It’s the same format that PowerBuilder uses in
libraries (PBL files) to store individual objects in an executable state.

Advantages of Pcode include its small size and portability.

145



Environment

Kinds

Implementation

Documentation

Machine code

Description

Ingredients

Kinds

Implementation

Documentation

146

A Pcode application can use either a single executable (EXE) file or a small
executable file and one or more PBD files.

Project painter

To learn about Pcode executable files, see Application Techniques.

Another route you can take is to generate your executable application in
machine code. The key advantage of machine code is speed of execution.

PowerBuilder uses different compiler technology depending on the
development platform:

32-bit Windows
16-bit Windows
Macintosh

Sun Solaris
HP-UX

IBM AIX

* & 6 o o o

A machine code application can use either a single executable (EXE) file, or a
small executable file plus one or more DLL files.

Project painter

To learn about machine code executable files, see Application Techniques.



CHAPTER 4 How You Build It

About this chapter Once you know the kind of application you want, you’ll use the tools in
PowerBuilder to develop it. This chapter describes how you’ll work with
those tools (and related products) over the course of your development

project.
Contents
Topic Page
Using tools 148
Using objects 151
Testing and deployment 158

147



Using tools

Using tools

Setting up
PowerBuilder

Getting Help and
documentation

148

When you want to

Use

Install PowerBuilder and related tools

Setup program (platform-
specific)
FORINFO  See the

PowerBuilder Installation
Guide

Configure PowerBuilder toolbars

Toolbars dialog

FORINFO  See the
PowerBuilder User’s Guide

Customize a particular painter (such as the

Window painter)

The painter’s design options

Customize general features of PowerBuilder

The PowerBuilder System
Options dialog box

Customize the PowerBuilder toolbars (PowerBar

and PainterBar)

When you want to

The Toolbars facility
(available in the painters as
well as when no painters are
open)

Use

Learn about new features or PowerScript

functions and events

Online Help

Learn how to use PowerBuilder

Powersoft Online Books

Get the latest news on all Powersoft products

Powersoft Web site

Get updates to online books

Powersoft online books Web
site

Borrow information or syntax from

PowerBuilder documentation

Copy it from the Powersoft
Online Books or online Help

Provide site-specific online Help to your

developers

The User button in online
Help

FORINFO  See Application

Techniques



Chapter 4 How You Build It

Using CASE tools

Connecting to
databases within
PowerBuilder

Managing databases

Managing tables and
views

Managing extended
attributes

When you want to

Use

Enhance the development process by using a
design or CASE (Computer Aided Software
Engineering) tool

When you want to

PowerDesigner
FOR INFO  To learn about:

¢ PowerDesigner products
and features, see the
Powersoft Web site

¢ Using PowerDesigner
once you have it, see the
PowerDesigner
documentation set

Use

Install appropriate database interfaces

Setup program

FOR INFO See Connecting to
Your Database

Configure ODBC data sources (if appropriate)

Configure ODBC dialog box

Define and use database profiles

In this situation | When you want to

Database Profiles dialog box

Use

SQL Anywhere
(Windows and
Macintosh only)

Create and delete SQL
Anywhere databases

Database painter

Perform full management
of SQL Anywhere
databases

Sybase SQL Central utility
(Windows only)

Security Define database security

When you want to

Database Administration
painter

Use

Create and control tables or views

Database painter

Define or edit table details

When you want to

Table painter

Use

Maintain edit styles, display formats, and
validation rules

Database painter (and
repository)

149



Using tools

Manipulating table
data

Migrating tables

Testing and
executing SQL

150

When you want to

Use

Define extended attributes for table columns

Table painter (and repository)

Set access options for the repository

Database painter
(Design>Options)

Generate reports about extended attributes in a
database

When you want to

PowerBuilder Extended
Attribute Reporter (from the
Advanced PowerBuilder
Utilities)

Use

Retrieve, insert, update, delete, or save rows

When you want to

Data Manipulation painter

Use

Migrate data from one or more source tables to a
new or existing destination table (either within a
database or across databases)

When you want to

Data Pipeline painter

Use

Test SQL statements interactively

Database Administration
painter



Chapter 4 How You Build It

Using objects

Painting the user

When you want to

Use

Paint windows and controls

Window painter

Build your own controls

User Object painter

Paint menus and toolbars

Menu painter

interface Situation
Windows, controls,
and menus
Other components
and files

Painting the

Use ActiveX controls from
the collection provided with
PowerBuilder

Component Gallery for
Powersoft Tools

Use picture files (icons and
bitmaps) from the collection
provided with PowerBuilder

Art Gallery

Edit icons, bitmaps, and
cursors

application interface

When you want to

Watcom Image Editor
(installed with the Art
Gallery)

Use

Extend standard PowerBuilder nonvisual classes

User Object painter

Encapsulate application logic or validation rules in
reusable nonvisual classes

Coding PowerScript .
Situation

When you want to

User Object painter

Use

Objects

Display information
(properties, events,
functions, variables, and
structures) about objects

The Browser

Display inheritance
information about class
hierarchies

The Browser (select
Show Hierarchy from
the popup menu)

Display OLE object
information (classes,
properties, events, functions)

The Browser (OLE tab)

Find a particular text string
in objects

Library painter
(Entry>Search)

151



Using objects

152

Situation

When you want to

Use

Get reports about objects

The Browser (display
the object information
you want, and select
Document from the
popup menu)

The Library painter
(Entry>Print)

See the ancestor version of a
script you're editing

PowerScript painter
(Design>Display
Ancestor Script)

Track object access in a
multiple-developer
environment

Library painter

Track versions of objects

Library painter

View a complete or selected
list of the objects in a library

Library painter

Events and functions

Define global functions

Function painter

Define user-defined events

Window painter, User
Object painter, Menu
painter, Application
painter (Declare>User
Events)

Define object functions

Window painter, User
Object painter, Menu
painter, Application
painter
(Declare>objecttype
Functions, which
displays the Function
painter)

Variables

Declare local variables

PowerScript painter

Declare instance, shared,
and global variables

Window painter, User
Object painter, Menu
painter, Application
painter



Chapter 4 How You Build It

Situation

When you want to

Use

External functions

Declare global external
functions (for DLL
functions, shared-library
functions, and database
stored procedures)

Window painter, User
Object painter, Menu
painter, Application
painter, Function painter

Define structures for objects

Window painter, User
Object painter, Menu
painter, Application
painter, Function painter

Define global structures

When you want to

Structure painter

Use

Structures
Building database . .
access Situation
Embedded SQL

Code embedded SQL in event
and function scripts

PowerScript painter
(invoked whenever you
edit scripts in one of the
object painters)

Data-access objects

Paint DataWindow objects

DataWindow painter

Paint Report objects

Report painter or
InfoMaker

Paint data pipeline objects

Data Pipeline painter

Develop canned queries for
use in other painters

Query painter

DataWindow
development
services

Generate syntax to report on
and manipulate properties of
DataWindow objects

DWSyntax utility
(dwsyn60.exe)

Generate PowerScript
statements to override default
DataWindow behavior and
update the database through
stored procedures

Stored Procedure
Update for
DataWindows
(Advanced
PowerBuilder Utilities)

Match properties of a
DataWindow object with
extended attributes from the
repository

DataWindow Extended
Attribute Synchronizer
(Advanced

PowerBuilder Utilities)

Check the validity of SQL
statements used by
DataWindow objects

DataWindow SQL
Verifier (Advanced
PowerBuilder Utilities)

153



Using objects

Developing nonvisual
classes

Using other
languages

Specifying
application logistics

Generating a quick
application

154

Situation When you want to

Use

Output files Generate output files (PSR,
HTML, or other formats) from
DataWindows, reports,

queries, or databases

When you want to

DataWindow painter,
Report painter, Query
painter, or Data
Manipulation painter
(File>SaveRowsAs in
preview mode)

Use

Extend PowerBuilder standard class user objects

User Object painter

Create custom class user objects that encapsulate
application logic or validation rules (for use locally or
with distributed applications)

User Object painter

Create an extensible attribute-only object to use
instead of a global structure

When you want to

User Object painter

Use

Develop C++ classes

C++ Class Builder (via
User Object painter)

Write AppleScript scripts

When you want to

File editor

Use

List the PBLs that contain objects used in the
application

Application painter
(does not apply to all
application architectures)

Specify the icon associated with an application

Application painter

Override the variable types for an application’s
default system objects

Application painter

Specify default fonts for an application

When you want to

Application painter

| Use

Quickly create the basic components of a skeletal
MDI-style application

The quick application
feature (and application
template) in the
Application painter



Chapter 4 How You Build It

Translating
application text

Editing text files

Opening objects

Getting object
information

When you want to

Use

Translate application text to another language to create
localized PowerBuilder applications

When you want to

Translation Toolkit

Use

Edit text files

When you want to

File editor

Use

Open up an object in a PowerBuilder painter

PowerBar, Library
painter, Browser,
Application painter,
File menu (most
recently edited
objects), or the File
menu of the
appropriate object
painter

Situation When you want to Use
Browsing Display or copy/paste object The Browser
properties, events, functions,
and variables
Display OLE object The Browser (OLE tab)
information (classes,
properties, events, functions)
Display the inheritance The Browser
hierarchy for objects
Reporting Print the contents of an object | Library painter (or the

appropriate object
painter)

Print an object’s hierarchy,
properties, instance variables,
events, and functions

The Browser

Copy object information to
the clipboard or save it as an
RTF file

The Browser

155



Using objects

Managing objects
and libraries

Using source control

156

Situation When you want to Use
Report on object PowerBuilder Cross
interdependencies in an Reference (Advanced
application PowerBuilder Utilities)
Report on obsolete function Migration Assistant
usage

Searching Search for text in objects Library painter

When you want to

(Entry>Search) or
PowerBuilder Object
Searcher (Advanced
PowerBuilder Utilities)

Search for objects in libraries

PowerBuilder Object
Searcher (Advanced
PowerBuilder Utilities)

Use

Create a new library

Library painter,
Application painter

Copy, move, and delete objects

Library painter

Generate a PBD or DLL from a single PowerBuilder

library

Library painter

Create PBDs or DLLs for all the PBLs in an application

Project painter

Export an object to source

Library painter

Import an object from source

Library painter

Control the objects listed in the Library painter

When you want to

Library painter Options
dialog
(Design>Options)

Use

Check an object out

Library painter (native
PowerBuilder facility)

Check an object in

Library painter (native
PowerBuilder facility)

Specify a source control system

Library painter



Chapter 4 How You Build It

Regenerating objects

When you want to

| Use

Advanced source control features, such as versioning

When you want to

ObjectCycle or one of
the other third-party
source control
interfaces to
PowerBuilder

Use

Regenerate selected objects

Library painter
(Entry>Regenerate)

FOR INFO  See the
PowerBuilder User’s
Guide

Regenerate objects in an inheritance hierarchy

Browser

Regenerate (rebuild) any objects affected by changes
in the current application

Library painter
(Design>Incremental
Rebuild)

Regenerate (rebuild) all objects in the current
application

Library painter
(Design>Full Rebuild)

Optimize a PBL’s internal structure

Library painter

(Library>Optimize)

157



Testing and deployment

Testing and deployment

Running

158

When you want to

Use

Execute the application from the development
environment

Run facility

Execute a specific window from the
development environment

Run Window facility

Preview an object as you paint it

The Preview facility in the
appropriate painter

Execute a report in print preview mode

Run Report facility

Test and analyze SQL statements interactively

The Database Administration
painter

Examine the SQL statements generated by a
DataWindow before they are sent to the database
for execution

The SQLPreview event of the
appropriate DataWindow
control

FOR INFO  See the
PowerScript Reference

Trap execution-time errors in DataWindow data
expressions or property expressions

The Error event of the
appropriate DataWindow
control

Trap database retrieval or update errors
encountered by a DataWindow

The DBError event of the
appropriate DataWindow
control

Trace the interactions between your application
and a database it accesses

The Database Trace tool or
the ODBC Driver Manager
Trace

FOR INFO See Connecting to
Your Database

Examine values in your test database

The Database Administration
painter, Data Manipulation
painter, or Query painter



Chapter 4 How You Build It

Debugging

Tracing and profiling

When you want to

Use

Test run the application in debug mode—to be

able to:

¢ Stop it at breakpoints

Step through its script code line by line

¢
¢ Look at the contents of variables
*

Maodify the contents of variables for test

purposes

¢ Watch how variables change

Debugger

Jump into the debugger while running an
application in the development environment

The Debug button on the
Terminate This Application
dialog box

Trap serious errors when running the
application (so that you can handle them with
code of your own instead of relying on the
PowerBuilder default execution-time error

The SystemError event of the
Application object

processing)
Situation When you want to Use
Application Trace an entire System Options dialog box,
application Profiling tab
Trace a portion of an StartTrace, EndTrace, and
application other trace-related PowerScript
(programmatic control) | functions
FOR INFO  See the
PowerScript Reference
Trace a portion of an The w_starttrace window
application (graphical (provided with the Application
interface) Profiler)
Analyze and display The Application Profiler
trace results (profile.exe)
Create a text-based The execution trace facility
trace file (can be activated on the
System Options dialog box)
Database Trace the interactions Database Trace tool or ODBC

between your
application and a
database

Driver Manager Trace

159



Testing and deployment

Generating the
executable application

Installing the
application

160

When you want to

Use

Generate an executable file and dynamic libraries

Project painter

FOR INFO See Application
Techniques

Generate dynamic libraries

Library painter

Generate user objects for use on the client side of
a distributed application

Project painter

Include bitmaps, icons, and cursors with the
executable file and/or dynamic libraries

PowerBuilder resource (PBR)
files

Generate a C++ interface for by C++ client
programs

When you want to

Project painter

Use

Build a complete setup program

InstallShield Express or
PBSetup (Windows only)

Install the appropriate PowerBuilder Deployment
Kit

InstallShield Express or
PBSetup (Windows only)

Install database client software

DBMS-specific client
software installation
procedure

Install database interfaces

InstallShield Express or
PBSetup (Windows only)

Configure ODBC drivers, updating registry or
INI files (ODBCINST.INI and ODBC.INTI )

InstallShield Express or
PBSetup (Windows only)

Distribute updated deployment modules or a new
version of your application

The Synchronizer

Install the PowerBuilder window plug-in or
DataWindow plug-in

InstallShield Express or
PBSetup (Windows only)

Install the PowerBuilder window ActiveX

InstallShield Express or
PBSetup (Windows only) or
use the CODEBASE attribute
to install it automatically

Install the PowerBuilder automation server
component

PBGenReg program



Chapter 4 How You Build It

Updating deployed
files 9 When you want to Use

Update a machine with the latest versions of The Synchronizer

specified files (such as DLLs) FOR INFO  See the

Synchronizer Users Guide

Migrating libraries

When you want to Use

Migrate libraries to a new release of Library painter

PowerBuilder (Design>Migrate)

Managing releases . .

Situation When you want to Use

Beginning a new release | Set up libraries and If using a source control
source control files to | system: Library painter
begin developing a (Source>Create New Release)
new version of an

If not using a source control

application system: the operating system
(to make new copies of the
application’s PBL files)
Restoring a prior Recreate libraries Project painter
release from a previous (Design>Restore Libraries)

version of an
application (if using a
source control system)

161



Testing and deployment

162



Index

A

ActiveX automation 68
ActiveX controls
about 123, 160
PowerBuilder window ActiveX 8, 63
ActiveX, samples 52
AIX, version supported 19
ancestor events, returning values 44
AncestorReturnValue variable 44
AppleScript scripts
editing 120
executing 120
application
closing 138
coding final processing for 137
coding initial processing for 137
coding system error processing for 137
cross-platform 139
distributed 129
fonts for 137
icon 160
library search path for 137
opening 138
organizing objects for 96
specifying logistics for 137
tiers 129
variable types for 137
version control 42
application context 138
application framework
about 101
enhancing with special-purpose libraries 103
Application objects, source control 42
Application painter
specifying library search pathin 137
using to create a new library 156
Application Profiler 159
application programming interface 86
Arabic language, support for 23

Art Gallery 151
ASCII, saving as 37
asynchronous calls

about 4

and server push 3
automation

about 125

ActiveX 68

OLE 122

base classes 101

border painting, and DataWindows 37
breakpoints, setting 159

Browser, new features 40

Button object 34

C

C++ Class Builder 128
charting tool 53
CheckBox controls 79
checkboxes, centering 35
child windows 76
class definition information 46
class library
acquiring 103
developing 102
PowerBuilder Foundation Class Library 103
clipboard 119, 132
Close event for an application
about 138
coding 138
code generation 144
CommandButton controls 79
compiling, options for 144
Component Gallery for Powersoft Tools 52, 151



Index

component generators 18
component object model see OLE
compound documents 123
context feature 15, 138
context information service 15, 138
context keyword service 138
control property array 43
controls

defining your own 80

external 81

OLE 122

standard 78
cross-platform development

about 139

new features 19

use of libraries during 97
custom class user objects 101

D

data
manipulating in the PowerBuilder development
environment 150
piping between data sources 135, 150
data access requirements 105
Data Manipulation painter 150
Data Pipeline painter 150
data pipelines
about 135
using in the PowerBuilder development environment
150
Database Administration painter 150
database connectivity, new features 24
database interfaces 106
database interfaces, benefits of using 106
Database painter 149
database profiles, new user interface 25
database stored procedures 128
databases
defining security for 149
local, installing for users 160
migrating tables between 135, 150
overview of accessing 106
DataWindow controls
about 79

164

previewing reports in 131
DataWindow Extended Attribute Synchronizer 153
DataWindow HTML generation, new features 10
DataWindow objects
about 110
creating reports with 131
new features 33
OLEin 122,124
DataWindow plug-in 66
DataWindow SQL Verifier 153
DataWindow synchronization 5
DBCS, support for 22
DBMS
migrating tables from one to another 135, 150
overview of accessing 106
sending SQL statements to 149
DDE 126
debug mode, executing in 159
debugger, new feature 32
debugging an application, tracing database execution
158
Deployment Kit, new structure 48
deployment, new features 47
display formats, and DataWindows 38
distributed applications 129
DLL files
delivering 160
executing functions from 127
using controls from 81
DoScript function 120
dropdown menus 81
DropDownListBox controls 79
DropDownPictureListBox controls 79
DWSyntax utility 153

E

EditMask controls 79
electronic mail system, accessing 121
encapsulation 94, 99
environment for an application
database aspect 105
partitioning aspect 129
platform aspect 139
Error object, populating 50



Index

errors

execution-time 158

handling application system errors 137
events

about 88

ancestor return values 44

Close for an application 138

coding scripts for 89

defining your own 90

Open for an application 138

SystemError for an application
Excel5, SaveAs support 37
executable files

about 145

delivering 160
executable version of an application

compile options for 144

what goes init 145, 160
execution

database trace tool 158

debug mode 159

ending an application 137

library list 145

regular mode 158

role of application object 137

starting an application 137
exporting files from an application 132

138, 159

F

files
executable 145
reading 132
writing 132
font mapping 19
functions, external
using to execute database stored procedures
using to execute DLL functions 127
functions, PowerScript
about 92
DoScript 120
file manipulation 132
functions, user-defined 90

128

G

garbage collection 51
GenerateCSS property 11
generators in Project painter 18
Graph controls 79

graphing tool 53

GroupBox controls 80
GroupBox object 35

H

Hebrew language, support for 23
Help
files, delivering with an application 160
providing application Help to users 120
HOW Learning Edition 52
HP-UX, version supported 19
HScrollBar controls 79

HTML
DataWindow enhancements 10
forms 13
from DataWindow 133
tables 12

IBM AIX, version supported 19

ICO files, delivering as resources 160
icon, application 160

Image Editor 151

indexes, defining 149

inheritance 94

INI files
delivering with an application 160
usage 143
IntelliMouse Pointing Device 42
Internet

DataWindow plug-in 66
PowerBuilder window ActiveX 63
PowerBuilder window plug-in 65
Web.PB 62

Internet service 15, 138

Internet Tools, new features 7

165



Index

J

Japanese DBCS, support for 22
just-in-time debugging 32

K

keys, defining 149
keyword service 15, 138

L

last-compiled timestamp 41
libraries
about 96
class libraries 102
cross-platform use of 97
files for 96
listing those an application is to use 137
special-purpose 103
Library painter
about 96
new features 29,41, 42
using to create a new library 156
library search path
defining 137
use in executable application 145
Line controls 79
ListBox controls 79
ListView controls 79
load balancing 5
local databases, installing for users 160
localized deployment kits 21
logic
coding in scripts 89
coding in user-defined functions 90
logistics of an application 137
Lotus Notes, PowerBuilder Library for 103

machine code 144
mail system, accessing 121
main windows 74

166

maintenance of an application, delivering updated

application files 160

MAPI 121
MDI 83
MDI frames

about 77

defining toolbars for 82
MDI sheets 77
menus 81, 82
message boxes 75
migrating tables within or between databases
Migration Assistant 156
MultiLineEdit controls 79
multitier applications 60, 129

N

Name Server 5
nonvisual classes 100
n-up row selection, highlighting 38

(0

Object Browser, new features 40
object management, with libraries 96
ObjectCycle 157
object-oriented programming
class library usage 101
how objects work 94
PowerBuilder implementation 98
objects
about 94
class definition information 46
in an executable file 145
previewing 158

storing 96
OCX controls
about 81,122
samples 52
ODBC 108
OLE
about 122

ActiveX controls 123
automation 122, 125



Index

columns in DataWindows 122
compound documents 123
control 81,122
DataWindow objects 124
DataWindow presentation style 122
new features 26
objects 122
structured storage 126
OLE custom controls 81, 122
OLE GenReg utility 51
online books 148
Open event for an application 138
organizing objects 96
Oval controls 79

P
packaging an application
compile options for 144
what goes in the executable version 145, 160
painters
previewing objectsin = 158
storing work from 96
PBD files, delivering 160
PBFNT60.INI 19
.pbfnt60.ini 19
PBL files
about 96
cross-platform use of 97
PBUs, change in 20
Pcode
for 16-bit deployment 47
for an executable application 144
in a PBL (library) file 97
performance analysis 30
persistent state
DataWindows 5
shared objects 2
PFC see PowerBuilder Foundation Class Library
Picture controls 79
PictureButton controls 79
PictureListBox controls 79
piping data between data sources 135, 150
platforms
choosing for an application 139

portability of libraries across 97
plug-ins

DataWindow 66

PowerBuilder window 65
polymorphism 94, 100
PopulateError function 50
popup menus 82
popup windows 76
portability, libraries 97
POST, and asynchronous calls 4

PowerBuilder automation server component
156
PowerBuilder Extended Attribute Reporter

PowerBuilder Cross Reference utility

PowerBuilder Foundation Class Library

about 103
new features 38

PowerBuilder Library for Lotus Notes

PowerBuilder Object Searcher 156
PowerBuilder units, change in 20

PowerBuilder window ActiveX 8, 63

context feature 15, 138
secure mode 13
PowerBuiider window plug-in 65
context feature 15
new features 7

PowerBuilder window plug-in, context feature

PowerDesigner 149
PowerScript 92

Powersoft database interfaces 108
Powersoft Font Preferences 19
Powersoft online books 148
previewing

objects 158

reports 131

print preview

about 131

scrollbars 35

printing

about 131

DataWindow 134

RTE control 134
processing logic

coding in scripts 89

coding in user-defined functions
Profiler 159

profiling 30

90

68

150

138

167



Index

programs
configuring 160
installing for users 160
Project painter, new features 18, 47
PSChart 53
PSR files 133

R

RadioButton controls 79
Rectangle controls 79
registry 144, 160
regular mode, executing in 158
remote procedure calls 128
reports 131
resources

delivering 160

in an executable file 145
response windows 75
RichTextEdit controls 79
right-to-left operating systems, support for
RoundRectangle controls 79
RowFocusChanging event 36
RPC 128

S

SaveAs function, new features 37
SaveAsAscii function 37

SCC API 29
scripts
about 89

ingredients of 92
scrollbars, print preview support 35
SDI 83
secure mode
plug-ins 13 )
PowerBuilder window ActiveX 9,13
security, defining for databases 149
server databases 106
server push 3
shared objects 2
SignalError function 50
SingleLineEdit controls, about 79

168

23

single-tier applications 57, 129
Solaris, version supported 19
source control
and Application objects 42
new API 29
SQL Anywhere 149
SQL Central utility 149
SQL statements
about 109
embedding in scripts 92
sending to the DBMS for execution 150
standard class user objects 101
state information, DataWindows 5
StaticText controls 79
storages 126
Stored Procedure Update for DataWindows utility 153
streams 126
structured storage 126
submenus 81
subroutines
implementing with user events 90
implementing with user-defined functions 90
synchronization
application files 48
DataWindows 5
Synchronizer 48
synchronous calls, and server push 3
system error processing for an application 137
SystemError event for an application 138, 159

T

Tab controls
about 80
control property array 43
Table painter 149
tables
defining 149
manipulating data in PowerBuilder 150
migrating within or between databases 135, 150
overview of accessing 106
testing an application
tracing and profiling 30
tracing database execution 158
timers, nonvisual 43



Index

timestamp, last-compiled 41
Timing object 43
toolbars
defining for MDI frames 82
new look 41
tracing 30
Translation Toolkit 24, 155
TreeView controls 79
two-tier applications 58, 129

U

Unicode Standard, support for 21

user events 90

user interface design
basics in PowerBuilder 74
SDI versus MDI 83

user objects

using to access external controls
using to define your own controls

'

variable declarations 92

variables, working with while debugging

version control
and Application objects 42
new APl 29
views
defining in Database painter
in Debugger 32
visual classes 100
VScrollBar controls 79

w

Web, jumping to from PowerBuilder

Web.PB

about 62

new features 7
wizard on PowerBar 51
windows

about 74

displaying controls in 78
displaying menu bar for 81
displaying popup menus in 82
role of 74

testing one in isolation 158
types of 74

169



	02841313     ==================.tif
	02841314.tif
	02841315.tif
	02841316.tif
	02841317.tif
	02841318.tif
	02841319.tif
	02841320.tif
	02841321.tif
	02841322.tif
	02841323.tif
	02841324.tif
	02841325.tif
	02841326.tif
	02841327.tif
	02841328.tif
	02841329.tif
	02841330.tif
	02841331.tif
	02841332.tif
	02841333.tif
	02841334.tif
	02841335.tif
	02841336.tif
	02841337.tif
	02841338.tif
	02841339.tif
	02841340.tif
	02841341.tif
	02841342.tif
	02841343.tif
	02841344.tif
	02841345.tif
	02841346.tif
	02841347.tif
	02841348.tif
	02841349.tif
	02841350.tif
	02841351.tif
	02841352.tif
	02841353.tif
	02841354.tif
	02841355.tif
	02841356.tif
	02841357.tif
	02841358.tif
	02841359.tif
	02841360.tif
	02841361.tif
	02841362.tif
	02841363.tif
	02841364.tif
	02841365.tif
	02841366.tif
	02841367.tif
	02841368.tif
	02841369.tif
	02841370.tif
	02841371.tif
	02841372.tif
	02841373.tif
	02841374.tif
	02841375.tif
	02841376.tif
	02841377.tif
	02841378.tif
	02841379.tif
	02841380.tif
	02841381.tif
	02841382.tif
	02841383.tif
	02841384.tif
	02841385.tif
	02841386.tif
	02841387.tif
	02841388.tif
	02841389.tif
	02841390.tif
	02841391.tif
	02841392.tif
	02841393.tif
	02841394.tif
	02841395.tif
	02841396.tif
	02841397.tif
	02841398.tif
	02841399.tif
	02841400.tif
	02841401.tif
	02841402.tif
	02841403.tif
	02841404.tif
	02841405.tif
	02841406.tif
	02841407.tif
	02841408.tif
	02841409.tif
	02841410.tif
	02841411.tif
	02841412.tif
	02841413.tif
	02841414.tif
	02841415.tif
	02841416.tif
	02841417.tif
	02841418.tif
	02841419.tif
	02841420.tif
	02841421.tif
	02841422.tif
	02841423.tif
	02841424.tif
	02841425.tif
	02841426.tif
	02841427.tif
	02841428.tif
	02841429.tif
	02841430.tif
	02841431.tif
	02841432.tif
	02841433.tif
	02841434.tif
	02841435.tif
	02841436.tif
	02841437.tif
	02841438.tif
	02841439.tif
	02841440.tif
	02841441.tif
	02841442.tif
	02841443.tif
	02841444.tif
	02841445.tif
	02841446.tif
	02841447.tif
	02841448.tif
	02841449.tif
	02841450.tif
	02841451.tif
	02841452.tif
	02841453.tif
	02841454.tif
	02841455.tif
	02841456.tif
	02841457.tif
	02841458.tif
	02841459.tif
	02841460.tif
	02841461.tif
	02841462.tif
	02841463.tif
	02841464.tif
	02841465.tif
	02841466.tif
	02841467.tif
	02841468.tif
	02841469.tif
	02841470.tif
	02841471.tif
	02841472.tif
	02841473.tif
	02841474.tif
	02841475.tif
	02841476.tif
	02841477.tif
	02841478.tif
	02841479.tif
	02841480.tif
	02841481.tif
	02841482.tif
	02841483.tif
	02841484.tif
	02841485.tif
	02841486.tif
	02841487.tif
	02841488.tif
	02841489.tif

